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C H A P T E R

2 The Bridge: Special Relativity to
General Relativity17

Edmund Bertschinger & Edwin F. Taylor *

Law 1. Every body perseveres in its state of being at rest or of18

moving uniformly straight forward except insofar as it is19

compelled to change its state by forces impressed.20

—Isaac Newton21

At that moment there came to me the happiest thought of my22

life . . . for an observer falling freely from the roof of a house no23

gravitational field exists during his fall—at least not in his24

immediate vicinity. That is, if the observer releases any objects,25

they remain in a state of rest or uniform motion relative to26

him, respectively, independent of their unique chemical and27

physical nature. Therefore the observer is entitled to interpret28

his state as that of “rest.”29

—Albert Einstein30

2.1 LOCAL INERTIAL FRAME31

We can always and (almost!) anywhere “let go” and drop into a local inertial frame.32

Law 1 above, Newton’s First Law of Motion, is the same as our definition of33

an inertial frame (Definition 1, Section 1.1). For Newton, gravity is just one ofNo force of gravity
in inertial frame

34

many forces that can be “impressed” on a body. Einstein, in what he called35

the happiest thought of his life, realized that on Earth, indeed as far as we36

know anywhere in the Universe—except on the singularity inside the black37

hole—we can find a local “free-fall” frame in which an observer does not feel38

gravity. We understand instinctively that always and anywhere we can removeLocal inertial frame
available anywhere

39

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. This draft may be duplicated for personal and class use.

2-1



January 16, 2018 09:35 SRtoGR170511v1 Sheet number 3 Page number 2-2 AW Physics Macros

2-2 Chapter 2 The Bridge: Special Relativity to General Relativity

FIGURE 1 Vito Ciaravino, a University of Michigan student, experiences weightlessness
as he rides the Vomit Comet. NASA photo.

the floor or cut the cable that holds us up and immediately drop into a local40

inertial frame. There is no force of gravity in Einstein’s inertial frame—“at41

least not in his immediate vicinity.”42

Einstein’s phrase “in his [the observer’s] immediate vicinity” brings a43

warning: Generally, an inertial frame is local. Section 1.11 showed that tidalIn curved spacetime
inertial frame is local.

44

effects can limit the extent of distances and times measured in a frame in45

which special relativity is valid and correctly describes motions and other46

observations.47

We call a local inertial frame a free-fall frame, even though from someInertial frame ≡
free-fall frame

48

viewpoints the frame may not be falling. A rising rocket immediately after49

burnout above Earth’s atmosphere provides a free-fall frame, even while it50

continues temporarily to climb away from the surface. So does an unpowered51

spaceship in interstellar space, which is not “falling” toward anything.52

Vito Ciaravino (Figure 1) floats freely inside the Vomit Comet, a NASA53

model C9 cargo plane guided to follow, for 25 to 30 seconds, the same54

trajectory above Earth’s surface that a free projectile would follow in the55

absence of air resistance (Figure 2). As Vito looks around inside the cabin, heLaws of physics
identical in every
inertial frame.

56

cannot tell whether his local container is seen by people outside to be rising or57

falling—or tracing out some other free-fall orbit. Indeed, he might forgetfully58

think for a moment that his capsule is floating freely in interstellar space. The59

Principle of Relativity tells us that the laws of physics are the same in every60

free-fall frame.61

Newton claims that tidal accelerations are merely the result of the62

variation in gravity’s force from place to place. But Einstein asserts: There is63

no such thing as the force of gravity. Rather, gravitational effects (including64

tides) are evidence of spacetime curvature. In Chapter 3 we find that tides are65
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FIGURE 2 Trajectory followed by the Vomit Comet airplane above Earth’s surface. Portions
of the trajectory marked “2 g” and “zero g” are parabolas. During the zero-g segment, which
lasts up to 30 seconds, the plane is guided to follow the trajectory of a free projectile in the
absence of air resistance. By guiding the plane through different parabolic trajectories, the pilot
can (temporarily!) duplicate the gravity on Mars (one-third of g on Earth) or the Moon (one-sixth
of g on Earth).

but one consequence of spacetime curvature. Many effects of curvature cannotSpacetime curvature
has many effects.

66

be explained or even described using Newton’s single universal frame in which67

gravity is a force like any other. General relativity is not just an alternative to68

Newton’s laws; it bursts the bonds of Newton’s vision and moves far beyond it.69

Flat and curved surfaces in space can illuminate, by analogy, features ofCurved surface
compared to
curved spacetime

70

flat and curved spacetime. In the present chapter we use this analogy between71

a flat or curved surface, on the one hand, and flat or curved spacetime, on the72

other hand, to bridge the transition between special relativity (SR) and73

general relativity (GR).74

2.2 FLAT MAPS: LOCAL PATCHES ON CURVED SURFACES75

Planning short and long trips on Earth’s spherical surface76

Spacetime curvature makes it impossible to use a single inertial frame to relateGeneral relativity
sews together
local inertial frames.

77

events that are widely separated in spacetime. General relativity makes the78

connection by allowing us to choose a global coordinate system that effectively79

sews together local inertial frames. General relativity’s task is similar to yours80

when you lay out a series of adjacent small flat maps to represent a long path81

between two widely separated points on Earth. We now examine this analogy82

in detail.83

Figure 3 is a flat road map of the state of Kansas, USA. Someone who84

plans a trip within Kansas can use the map scale at the bottom of this mapFlat Kansas map
“good enough”
for local traveler.

85

to convert centimeters of length on the map between two cities to kilometers86
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FIGURE 3 Road map of the state of Kansas, USA. Kansas is small enough, relative
to the entire surface of Earth, so that projecting Earth’s features onto this flat map does not
significantly distort separations or relative directions. (Copyright geology.com)

that he drives between these cities. The map reader has confidence that using87

the same map scale at different locations in Kansas will not lead to significant88

errors in predicting separations between cities—because “flat Kansas”89

conforms pretty well to the curved surface of Earth. Figure 4 shows a flat90

patch bigger than Kansas on which map distortions will still be negligible for91

most everyday purposes. In contrast, at the edge of Earth’s profile in Figure 492

is an edge-on view of a much larger flat surface. A projection from the rounded93

Earth surface onto this larger flat surface inevitably leads to some small94

distortions of separations compared to those actually measured along the95

curved surface of Earth. We define a space patch as a flat surface on which a96

projected map is sufficiently distortion-free for whatever purpose we are using97

the map.98

DEFINITION 1. Space patch99

A space patch is a flat surface purposely limited in size so that a mapDefinition:
space patch

100

projected onto it from a curved surface does not result in significant101

distortions of separations between locations for the purpose of a given102

measurement or journey.103

Let’s plan an overland trip along a path that we choose between the citySingle flat map
not accurate for
a long trip.

104

of Amsterdam in the Netherlands and the city of Vladivostok in Siberia. We105

recognize that on a single flat map the path of our long trip will be distorted.106

How then do we reckon the trip length from Amsterdam to Vladivostok? This107

total length for a long trip across much of the globe can be estimated using a108

series of local flat maps on slightly overlapping space patches (Figure 5). We109

sum the short separations across these small flat maps to reckon the total110

length of the long, winding path from Amsterdam to Vladivostok.111

On each local flat map we are free to fix positions using a square array of112

perpendicular coordinates (“Cartesian coordinates”) in north-south113



January 16, 2018 09:35 SRtoGR170511v1 Sheet number 6 Page number 2-5 AW Physics Macros

Section 2.2 Flat Maps: LOCAL Patches on Curved Surfaces 2-5

FIGURE 4 Small space patch and large flat plane tangent to Earth’s surface. Projecting
Earth’s features onto the large flat plane can lead to distortion of those features on the resulting
flat map. For precise mapmaking, the larger surface does not satisfy the requirements of a
space patch.

FIGURE 5 To reckon the total length of the path between Amsterdam and Vladivostok,
sum the short separations across a series of small, overlapping, flat maps lined up along our
chosen path. One of these small, flat maps covers all of Latvia. The smaller each map is—
and the greater the total number of flat maps along the path—the more accurately will the sum
of measured distances across the series of local maps represent the actually-measured total
length of the entire path between the two cities.

(y-coordinate) and east-west (x-coordinate) directions applied to that114

particular patch, for example on our regional map of Latvia. The distance orOn each small
flat map, use the
Pythagorean
Theorem.

115

space separation between two points, ∆sLatvia, that we calculate using the116

Pythagorean Theorem applied to the flat Latvian map is almost equal to the117

separation that we would measure using a tape measure that conforms to118

Earth’s curved surface. Use the name local space metric to label the local,119

approximate Pythagorean theorem:120

∆s2
Latvia ≈ ∆x2

Latvia + ∆y2
Latvia (local space metric on Latvian patch) (1)
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Comment 1. Notation for Approximate Metrics121

Equation (1) displays the notation that we use throughout this book for an122

approximate metric on a flat patch. First, the symbol capital delta, ∆, stands for∆ means
increment, a
finite but small
separation.

123

increment, a measurable but still small separation that gives us “elbow room” to124

make measurements. This replaces the unmeasurably small quantity indicated by the125

zero-limit calculus differential d. Second, the approximately equal sign, ≈,126

acknowledges that, even though our flat surface is small, projection onto it from the127

curved surface inevitably leads to some small distortion. Finally, the subscript label,128

such as “Latvia,” on each incremental variable names the local patch.129

We order flat maps from each nation through which we travel from130

Amsterdam to Vladivostok and measure little separations on each map131

(Figure 5). In equation (1), from our choice of axes, ∆yLatvia aligns itself with132

a great circle that passes through the north geographic pole, while ∆xLatvia133

lies in the perpendicular east-west direction.134

On a more ancient local flat map, the coordinate separation ∆yLatvia,rot135

may lie in the direction of magnetic north, a direction directly determinedGeographic north
and magnetic north
yield same ∆s.

136

with a compass. Choose ∆xLatvia,rot to be perpendicular to ∆yLatvia,rot. Then137

in rotated coordinates using magnetic north the same incremental separation138

between points along our path is given by the alternative local space metric139

∆s2
Latvia ≈ ∆x2

Latvia,rot + ∆y2
Latvia,rot = ∆x2

Latvia + ∆y2
Latvia (2)

These two local maps are rotated relative to one another. But the value of140

the left side is the same. Why? First, because the value of the left side is141

measured directly; it does not depend on any coordinate system. Second, the142

values of the two right-hand expressions in (2) are equal because the143

Pythagorean theorem applies to all flat maps. Conclusion: Relative rotationPythagorean
Theorem valid on
rotated flat maps.

144

does not change the predicted value of the incremental separation ∆sLatvia145

between nearby points along our path. So when we sum individual separations146

to find the total length of the trip, we make no error when we use a variety of147

maps if their only difference is relative orientation toward north.148

2.3 GLOBAL COORDINATE SYSTEM ON EARTH149

Global space metric using latitude and longitude150

A professional mapmaker (cartographer) gently laughs at us for laying side by151

side all those tiny flat maps obtained from different and possibly undependable152

sources. She urges us instead to use the standard global coordinate system ofUse latitude
and longitude.

153

latitude and longitude on Earth’s surface (Figure 6). She points out that a154

hand-held Global Positioning System (GPS) receiver (Chapter 4) verifies to155

high accuracy our latitude and longitude at any location along our path.156

Combine these readings with a global map—perhaps already installed in the157

GPS receiver—to make easy the calculation of differential displacements ds on158

each local map, which we then sum (integrate) to predict the total length of159

our path.160
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FIGURE 6 Conventional global coordinate system for Earth using angles of latitude λ and
longitude φ.

What price do we pay for the simplicity and accuracy of latitude and161

longitude coordinates? Merely our time spent receiving a short tutorial on the162

surface geometry of a sphere. Our cartographer lays out Figure 6 that showsSpace metric in
global coordinates

163

angles of latitude λ and longitude φ, then gives us a third version of the space164

metric—call it a global space metric—that uses global coordinates to165

provide the same incremental separation ds between nearby locations as does a166

local flat map:167

ds2 = R2 cos2 λ dφ2 +R2dλ2 (0 ≤ φ < 2π and − π/2 ≤ λ ≤ +π/2) (3)

Here R is the radius of Earth. For a quick derivation of (3), see Figure 7.168

Why does the function cosλ appear in (3) in the term with coordinateGlobal space metric
contains coordinates
as well as
differentials.

169

differential dφ? Because north and south of the equator, curves of longitude170

converge toward one another, meeting at the north and south poles. When we171

move 15o of longitude near the equator we travel a much longer east-west path172

than when we move 15o of longitude near the north pole or south pole. Indeed,173

very close to either pole the traveler covers 15o of longitude when he strolls174

along a very short east-west path.175

RIDDLE: A bear walks one kilometer south, then one kilometer east, then176

one kilometer north and arrives back at the same point from which she177

started. Three questions:178

1. What color is the bear?179

2. Through how many degrees of longitude does the bear walk eastward?180

3. How many kilometers must the bear travel to cover the same number of181

degrees of longitude when she walks eastward on Earth’s equator?182

The global space metric (3) is powerful because it describes the differential183

separation ds between adjacent locations anywhere on Earth’s surface.184
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FIGURE 7 Derive the global space metric (3), as the sum of the squares of the north-south
and east-west sides of a little box on Earth’s surface. The north-south side of the little box is
Rdλ, where R is the radius of Earth and dλ is the differential change in latitude. The east-west
side is R cosλ dφ. The global space metric (3) adds the squares of these sides (Pythagorean
Theorem!) to find the square of the differential separation ds2 across the diagonal of the little
box.

However, we still want to relate global coordinates to a local measurement185

that we make anywhere on Earth. To achieve this goal, recall that on every186

space patch Earth’s surface is effectively flat. On this patch we apply ourAdapt global
metric on a
small patch . . .

187

comfortable local Cartesian coordinates, which allow us to use our188

super-comfortable Pythagorean Theorem—but only locally!189

For example the latitude λ does not vary much across Latvia, so we can190

use a constant (average) λ̄. Then we write:191
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∆s2
Latvia ≈ R2 cos2 λ̄∆φ2 +R2∆λ2 (in or near Latvia) (4)

≈ ∆x2
Latvia + ∆y2

Latvia

In the first line of (4) the coefficient R2 is a constant. (We idealize the Earth192

as a sphere with the same radius to every point on its surface.) Then the. . . to make
a local metric
with Cartesian
coordinates.

193

coefficient R2 cos2 λ̄ is also constant, but in this case only across the local194

patch with average latitude λ̄. Oh, joy! Constant coefficients allow us to define195

local Cartesian frame coordinates that lead to the second line in equation (4):196

∆xLatvia ≡ R cos λ̄∆φ and ∆yLatvia ≡ R∆λ (in or near Latvia) (5)

Over and over again in this book we go from a global metric to a local197

metric, following steps similar to those of equations (4) and (5).198

Comment 2. No reverse transformation199

Important note: This global-to-local conversion cannot be carried out in reverse. A200

local metric tells us nothing at all about the global metric from which it was derived.201

The reason is simple and fundamental: A space patch is, by definition, flat: it carries202

no information whatsoever about the curvature of the surface from which it was203

projected.204

Global space metric (3) provides only the differential separation ds205

between two adjacent points that have the “vanishingly small” separation206

demanded by calculus. To predict the measured length of a path from207

Amsterdam to Vladivostok, use integral calculus to integrate (“sum”) this208

differential ds along the entire path. Calculus advantage: Because allIntegrate differential
separation ds to
calculate exact
length of long path.

209

increments are vanishingly small (for which each differential patch of Earth210

has, in this limit, no curvature at all), their integrated sum—the total211

length—is completely accurate. Similarly, when we use local space metrics (1)212

or (2) to approximate the total length, we sum the small separations across213

local maps, each of which is confined to a single patch. Multiple-patch214

advantage: We can use Cartesian coordinates to make direct local215

measurements, then simply sum our results to obtain an approximate total216

distance.217

Suppose that our goal is to find a path of shortest length between these218

two cities. Along our original path, we move some of the intermediate pointsFind shortest path 219

perpendicular to the path and recalculate its total length, repeating the220

calculus integration or summation until any alteration of intermediate221

segments no longer decreases the total path length between our fixed end222

locations, Amsterdam and Vladivostok. We say that the path that results from223

this process has the shortest length of all neighboring paths between these two224

cities on Earth. Everyone, using any global coordinate system or set of local225

frame coordinates whatsoever, agrees that we have found the path of shortest226

length near our original path.227

Does Earth care what global coordinate system we use to indicateUse any global
coordinate system
whatsoever.

228

positions on it? Not at all! An accident of history (and international politics)229
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fixed the zero of longitude at Greenwich Observatory near London, England. If230

Earth did not rotate, there would be no preferred axis capped by the north231

pole; we could place this pole of global coordinates anywhere on the surface.232

No one can stop us from abandoning latitude and longitude entirely and233

constructing a global coordinate system that uses a set of squiggly lines on234

Earth’s surface as coordinate curves (subject only to some simple requirementsSquiggly global
coordinates lead to
same predictions.

235

of uniqueness and smoothness). That squiggly coordinate system leads to a236

global space metric more complicated than (3), but one equally capable of237

providing the invariant differential separation ds on Earth’s surface—a238

differential separation whose value is identical for every global coordinate239

system. We can use the global space metric to translate differences in240

(arbitrary!) global coordinates into measurable separations on a space patch.241

Generalize further: Think of a potato—or a similarly odd-shaped asteroid.242

Cover the potato with an inscribed global coordinate system and derive from243

that coordinate system a space metric that tells us the differential separation244

ds between any two adjacent points on the potato. Typically this space metricMany global metrics
for the surface of
a given potato

245

will be a function of coordinates as well as of coordinate differentials, because246

the surface of the potato curves more at some places and curves less at other247

places. Then change the coordinate system and find another space metric. And248

again. Every global space metric gives the same value of ds, the invariant249

(measureable) separation between the same two adjacent points on the potato.250

Next draw an arbitrary continuous curve connecting two points far apart251

on the potato. Use any of the metrics again to compute the total length along252

this curve by summing the short separations between each successive pair of253

points. Result: Since every global space metric yields the same incrementalEveryone agrees
on the total length
of a given path.

254

separation between each pair of nearby points on that curve, it will yield the255

same total length for a given curve connecting two distant points on that256

surface. The length of the curve is invariant; it has the same value whatever257

global coordinate system we use.258

Finally, find a curve with a shortest total length along the surface of EarthEveryone agrees
that a given path
is shortest.

259

between two fixed endpoints. Since every global space metric gives the same260

length for a curve connecting two points on the surface, therefore every global261

space metric leads us to this same path of minimum length near to our original262

path.263

One can draw a powerful analogy between the properties of a curved264

surface and those of curved spacetime. We now turn to this analogy.265

2.4 MOTION OF A STONE IN CURVED SPACETIME266

A free stone moves so that its wristwatch time along each segment of its worldline is267

a maximum.268

Relativity describes not just the separation between two nearby points along a269

traveler’s path, but the spacetime separations between two nearby events that270

lie along the worldline of a moving stone. Time and space are inexorably tied271

together in the observation of motion.272
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How does a free stone move? We know the special relativity answer: WithStone follows
a straight worldline
in local inertial frame.

273

respect to an inertial frame, a free stone moves along a straight worldline, that274

is with constant speed on a straight trajectory in space. The Twin Paradox275

(Section 1.6) gives us an alternative description of free motion in an inertial276

frame, namely the Principle of Maximal Aging for flat spacetime: A free stone277

moves with respect to an inertial frame so that its wristwatch time between278

initial and final events is a maximum.279

How do we generalize the special-relativity Principle of Maximal Aging in280

order to predict the motion of a stone in curved spacetime? At the outset weHow to generalize
to GR Principle of
Maximal Aging?

281

don’t know the answer to this question, so we adopt a method similar to the282

one we used for our trip from Amsterdam to Vladivostok: There we laid a283

series of adjacent flat maps along the path (Figure 5) to create a map book or284

atlas that displays all the maps intermediate between the two distant cities.285

Then we determined the incremental separation along the straight segments of286

path on each flat map; finally we summed these incremental separations to287

reckon the total length of our journey.288

Start the spacetime analog with the spacetime metric in flat289

spacetime—equation (1.35):290

dτ2 = dt2lab − ds2
lab = dt2rocket − ds2

rocket (flat spacetime) (6)

where dtlab and dslab are the differential local frame time and space separations291

respectively between an adjacent pair of events in a particular frame, and dτ is292

the invariant (frame-independent) differential wristwatch time between them.293

Next we recall Einstein’s “happiest thought” (initial quote) and decide to294

cover the stone’s long worldline with a series of adjacent local inertial frames.Use adjacent
inertial frames.

295

We need to stretch differentials in (6) to give us advances in wristwatch time296

that we can measure between event-pairs along the worldline. (By definition,297

nobody can measure directly the “vanishingly small” differentials of calculus.)298

Around each pair of nearby events along a worldline we install a local inertial299

frame. Write the metric for each local inertial frame to reflect the fact that300

local spacetime is only approximately flat:301

∆τ2 ≈ ∆t2inertial −∆s2
inertial (“locally flat” spacetime) (7)

This approximation for the spacetime interval is analogous to the302

approximate equations (1) and (4) for Latvia. Equation (7) extends rigorous303

spacetime metric (6) to measurable quantities beyond the reach of differentials304

but keeps each pair of events within a sufficiently small spacetime region so305

that distortions due to spacetime curvature can be ignored as we carry out a306

particular measurement or observation. We call such a finite region of307

spacetime a spacetime patch. The effectively flat spacetime patch allows us308

to extend metric (6) to a finite region in curved spacetime large enough to309

accommodate local coordinate increments and local measurements. Equation310

(7) employs these local increments, indicated by the symbol capital delta, ∆,311

to label a small but finite difference.312
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DEFINITION 2. Spacetime patch313

A spacetime patch is a region of spacetime large enough not to be limitedSpacetime
patch

314

to differentials but small enough so that curvature does not noticeably affect315

the outcome of a given measurement or observation on that patch.316

Comment 3. What do “large enough” and “small enough” mean?317

Our definition of a patch describes its size using the phrases “large enough” and318

“small enough”. What do these phrases mean? Can we make them exact? Sure, but319

only when we apply them to a particular experiment. For every experiment, we can320

learn how to estimate a maximum local spatial size and a maximum local time lapse321

of the spacetime patch so that we will not detect effects of curvature on the results of322

our experiment. Until we choose a specific experiment, we cannot decide whether or323

not it takes place in a sufficiently small spacetime patch to escape effects of324

spacetime curvature.325

Equation (7) implies that we have applied local inertial coordinates to the326

patch. We call the result a local inertial frame, and use special relativity toApply special
relativity in
local inertial
frame.

327

describe motion in it. In particular the expression for a stone’s328

energy—equation (28) in Section 1.7—is valid for this local frame:329

Einertial

m
= lim

∆τ→0

∆tinertial

∆τ
=

1

(1− v2
inertial)

1/2
(8)

Here vinertial and Einertial are the speed and energy of the stone, respectively,330

measured in the local inertial frame using the tools of special relativity. The331

maximum size of a local inertial frame will depend on the sensitivity of our332

current measurement to local curvature. However, the minimum size of this333

frame is entirely under our control. In equation (8) we go to the differential334

limit to describe the instantaneous speed of a stone.335

We assert but do not prove that we can set up a local inertial336

frame—Einstein’s happiest thought—almost everywhere in the Universe. For337

more details on the spacetime patch and its coordinates, see Section 5.7.338

Now we generalize the special relativistic Principle of Maximal Aging to339

the motion of a stone in curved spacetime. Applying the Principle of Maximal340

Aging to a single local inertial frame tells us nothing new; it just leads to theUse adjoining
(flat) spacetime
patches.

341

original prediction: motion along a straight worldline in an inertial frame—this342

time a local one. How do we determine the effect of spacetime curvature?343

Generalize as little as possible by using two adjoining flat patches.344

DEFINITION 3. Principle of Maximal Aging (Special and General345

Relativity)346

The Principle of Maximal Aging says that a free stone follows a worldline347

through spacetime (flat or curved) such that its wristwatch time (aging) is a348

maximum across every pair of adjoining spacetime patches.349

In Sections 1.7 and 1.8 we used the Principle of Maximal Aging to find350

expressions for the energy and the linear momentum, constants of motion of a351

free stone in flat spacetime. In Section 6.2, the Principle of Maximal Aging is352
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central to finding an expression for the so-called global energy, a global353

constant of motion for the free stone near a black hole. Section 8.2 extends theTwo GR tools:
1. spacetime metric
2. Principle of
Maximal Aging

354

use of the Principle of Maximal Aging to derive an expression for the so-called355

global angular momentum, a second constant of motion for a free stone near a356

black hole. (Near a center of attraction, linear momentum is not a constant of357

motion for a free stone, but angular momentum is.) Chapter 11 adapts the358

Principle to describe the global motion of the fastest particle in the Universe:359

the photon. The spacetime metrics (global and local) and the360

Principle of Maximal Aging are the major tools we use to study361

general relativity.362

2.5 GLOBAL SPACETIME METRIC IN CURVED SPACETIME363

Wristwatch time between a pair of nearby events anywhere in a large spacetime364

region365

The cartographer laughed at us for fooling around with flat maps valid only366

over tiny portions of a curved surface in space. She displayed a metric (3) inSearch for
metric in global
coordinates.

367

global latitude and longitude coordinates, a global space metric that delivers368

the differential separation ds between two nearby stakes driven into the369

ground differentially close to one other anywhere on Earth’s curved surface. Is370

there a corresponding global spacetime metric that delivers the differential371

wristwatch time dτ between adjacent events expressed in global spacetime372

coordinates for the curved spacetime region around, say, a black hole?373

Yes! The global spacetime metric is the primary tool of general relativity.374

Instead of tracing a path from Amsterdam to Vladivostok across the curved375

surface of Earth, we want to trace the worldline of a stone through spacetimeGR global metric
delivers dτ .

376

in the vicinity of a (non-spinning or spinning) Earth, neutron star, or black377

hole. To do this, we set up a convenient (for us) global spacetime coordinate378

system. We submit these coordinates plus the distribution of mass-energy379

(plus pressure, it turns out) to Einstein’s general relativity equations.380

Einstein’s equations return to us a global spacetime metric for our submitted381

coordinate system and distribution of mass-energy-pressure. This metric is the382

key tool that describes curved spacetime, just as the space metric in (3) was383

our key tool to describe a curved surface in space.384

How do we use the global spacetime metric? Its inputs consist of global385

coordinate expressions and differential global coordinate separations—such as386

dt, dr, dφ—between an adjacent pair of events. The output of the spacetime387

metric is the differential wristwatch time dτ between these events. We then388

convert the global metric to a local one by stretching the differentials d to389

increments ∆, for example in (7), that track the wristwatch time of the stone390

as it moves across a local inertial frame. If the stone is free—that is, if its391

motion follows only the command of the local spacetime structure—then the392

Principle of Maximal Aging tells us that the stone moves so that its summed393

wristwatch time is maximum across every pair of adjoining spacetime patches394

along its worldline.395



January 16, 2018 09:35 SRtoGR170511v1 Sheet number 15 Page number 2-14 AW Physics Macros

2-14 Chapter 2 The Bridge: Special Relativity to General Relativity

Does the black hole care what global coordinate system we use in deriving396

our global spacetime metric? Not at all! General relativity allows us to use anyUse any global
coordinate system
whatsoever.

397

global coordinate system whatsoever, subject only to some requirements of398

smoothness and uniqueness (Section 5.8). The metric for every alternative399

global coordinate system predicts the same value for the wristwatch time400

summed along the stone’s worldline. We have (almost) complete freedom to401

choose our global coordinate system.402

What does one of these global spacetime metrics around a black hole look403

like? On the left will be the squared differential of the wristwatch time dτ2. OnContents of GR
global metric

404

the right is an expression that depends on the mass-energy-pressure of the405

center of attraction, on its spin if it is rotating, and on differentials of the406

global coordinates between adjacent events. Moreover, by analogy to equation407

(3) and Figure 7, the spacetime separation between adjacent events can also408

depend on their location, so we expect global coordinates to appear on the409

right side of the global spacetime metric as well. For a black hole, the result is410

a global spacetime metric with the general form:411

dτ2 = Function of


1. central mass/energy/pressure,
2. spin, if any,
3. global coordinate location,
4.differentials of
global coordinates

 (black hole metric)(9)

Why do differentials appear in equation (9)? Think of the analogy to aCurvature requires
use of differentials
in the metric.

412

spatial surface. On a (flat) Euclidean plane we are not limited to differentials,413

but can use total separations: the Pythagorean theorem is usually written414

a2 + b2 = c2. However, on a curved surface such as that of a potato, this415

formula is not valid globally. The Pythagorean theorem, when applied to416

Earth’s surface, is true only locally, in its approximate incremental form (1)417

and (2). Metrics in curved spacetime are similarly limited to differentials.418

However, we will repeatedly use transformations from global coordinates to419

local coordinates—similar to the global-to-flat-map transformation of420

equations (5)—to provide a comfortable local inertial frame metric (7) in421

which to make measurements and observations and to analyze results with422

special relativity.423

Chapter 3, Curving, introduces one global spacetime metric, the424

Schwarzschild metric of the form (9) in the vicinity of the simplest black hole,425

a black hole with mass but no spin. Study of the Schwarzschild metric revealsDifferent metrics
for the same
and different
spacetimes

426

many central concepts of general relativity, such as stretching of space and427

warping of time. Chapter 7, Inside the Black Hole, displays a different global428

metric for the same nonrotating black hole. Chapters 17 through 21 use a429

metric of the form (9) for a spinning black hole. Metrics with forms different430

from (9) describe gravitational waves (Chapter 16), and the expanding431

Universe (Chapters 14 and 15). In each case we apply the Principle of432

Maximal Aging to predict the motion of a stone or photon—and for the433

expanding universe the motion of a galaxy—in the region of curved spacetime434

under study.435
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The global coordinate system plus the global metric, taken together,436

provide a complete description of the spacetime region to which they apply,437

such as around a black hole. (Strictly speaking, the global coordinate systemComplete description
of spacetime

438

must include information about the range of each coordinate, a range that439

describes its “connectedness”—technical name, its topology.)440

2.6 THE DIFFERENCE BETWEEN SPACE AND SPACETIME441

Cause and effect are central to science.442

The formal difference between space metrics such as (1) and (3) and spacetime443

metrics such as (6) and (7) is the negative sign in the spacetime metric between444

the space part and the time part. This negative sign establishes a fundamental445

relation between events in spacetime geometry: that of a possible cause and446

effect. Cause and effect are meaningless in space geometry; geometricMinus sign in
metric implies
cause and effect.

447

structures are timeless (a feature that delighted the ancient Greeks). No one448

says, “The northern hemisphere of Earth caused its southern hemisphere.” In449

spacetime, however, one event can cause some other event. (We already know450

from Chapter 1 that for some event-pairs, one event cannot cause the other.)451

How is causation (or its impossibility) implied by the minus sign in the452

spacetime metric? See this most simply in the interval equation for flat453

spacetime with one space dimension:454

τ2 = t2lab − x2
lab = t2rocket − x2

rocket (flat spacetime) (10)

Figure 8 shows the consequences of this minus sign for events in the past and455

future of selected Event A. The relations between coordinates of the same456

event on the two diagrams are calculated using the Lorentz transformation457

(Section 1.10). The left panel in Figure 8 shows the laboratory spacetime458

diagram. Light flashes that converge on or are emitted from Event A trace outLight cones
partition spacetime.

459

past and future light cones. These light cones provide boundaries for events in460

the past that can influence A and events in the future that A can influence.461

For example, thin lines that converge on Event A from events B, C, and D in462

its past could be worldlines of stones projected from these earlier events, any463

one of which could cause Event A. Similarly, thin lines diverging from A and464

passing through events E, F, and G in its future could be worldlines of stones465

projected from Event A that cause these later events.466

The right panel of Figure 8 shows the rocket spacetime diagram, which467

displays the same events plotted in the left side laboratory diagram. The key468

idea illustrated in Figure 8 is that the worldline of a stone projected, for469

example, from Event A to event G in the laboratory spacetime diagram isCause and effect
are preserved.

470

transcribed as the worldline of the same stone projected from A to G471

(although with a different speed) in the rocket diagram. If this stone projected472

from A causes event G in one frame, then it will cause event G in both473

frames—and indeed in all possible inertial frames that surround Event A.474

More: As the laboratory observer clocks a stone to move with a speed less475

than that of light in the laboratory frame, the rocket observer also clocks the476
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tlab trocket

xrocketxlab

FIGURE 8 Preservation of cause and effect in special relativity. The laboratory spacetime
diagram is on the left, an unpowered rocket spacetime diagram is on the right. Both diagrams
plot a central Event A, and other events that may or may not cause A or be caused by A. Heavy
diagonal lines are worldlines for light flashes that pass through Event A and form light cones
that partition spacetime into PAST, FUTURE, and ELSEWHERE with respect to Event A. Little
black-filled circles in the past of A plot events that can cause Event A in both frames. Little
open circles in the future of A plot events that Event A can cause in both frames or in any other
overlapping inertial frame. Little open squares plot events that cannot cause Event A and that
cannot be caused by Event A in these frames or in any other inertial frame. Every ELSEWHERE
event has a spacelike relation to Event A (Section 1.3).

stone to move with a speed less than that of light in the rocket frame. Still477

more: Events B, C, and D in the past of Event A in the laboratory frame478

remain in the past of Event A in the rocket frame; cause and effect can never479

be reversed! The spacetime interval (10) guarantees all these results and480

preserves cause-and-effect relationships in every physical process.481

In contrast, events shown as little open boxes in the regions labeled482

ELSEWHERE in laboratory and rocket spacetime diagrams can neither cause483

Event A nor be caused by Event A. Why not? Because a worldline between484

any little box and Event A in the laboratory frame would have a slope ofImpossibility of
cause and effect
is also preserved.

485

magnitude less than one, so a speed (the inverse of slope) greater than that of486

light, a speed forbidden to stone or light flash. More: These worldlines487

represent faster-than-light speed in every rocket frame as well.488

No event in the regions marked ELSEWHERE can have a cause-and-effect489

relation with selected Event A when observed in any overlapping free-fall frame490

whatsoever. In this case the impossibility of cause and effect is guaranteed by491

the spacetime interval, which becomes spacelike between these two events:492

equation (10) becomes σ2 = s2
frame − t2frame for any overlapping frame.493
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Comment 4. Before or after?494

Note that some events in the ELSEWHERE region that occur before Event A in the495

laboratory frame occur after Event A in the rocket frame and vice versa. Does this496

destroy cause and effect? No, because none of these events can either cause Event497

A or be caused by Event A. Nature squeezes out of every contradiction!498

Figure 8 shows that time separation between event A and any event in itsInvariant
wristwatch
time

499

past or future light cone is typically different when measured in the two500

inertial frames, ∆trocket 6= ∆tlab, as is their space separation,501

∆xrocket 6= ∆xlab. But equation (10) assures us that the stone’s wristwatch502

time ∆τ along the straight worldline between any of these events and A has503

the same value for the observers in any overlapping inertial frame.504

TWO-SENTENCE SUMMARYSpacetime metric:
the guardian of
cause and effect

505

The space metric—with its plus sign—is guardian of the invariant separation506

in space.507

The spacetime metric—with its minus sign—is guardian of the invariant508

interval (cause and effect) in spacetime.509

It gets even better: Figure 5 in Section 1.6 and the text that goes with it510

already tell us that the minus sign in the spacetime metric is the source of the511

Principle of Maximal Aging: in an inertial frame the straight worldline (which512

a free stone follows) is the one with maximal wristwatch time.513

2.7 DIALOG: GOODBYE “DISTANCE.” GOODBYE “TIME.”514

Throw distance alone and time alone out of general relativity!515

Reader: You make a big deal about using events to describe everything and516

using your mighty metric to connect these events. So what does the metric tell517

us about the distance between two events in curved spacetime?518

Authors: The metric, by itself, tells us nothing whatsoever about the519

distance between two events.520

Are you kidding? If general relativity cannot tell me the distance between two521

events, what use is it?522

The word “distance” by itself does not belong in a book on general523

relativity.524

You must be mad! Your later chapters include Expanding Universe and525

Cosmology, which surely describe distances. Now and then the news tells us526

about a more precise measurement of the time back to the Big Bang.527

The word “time” by itself does not belong in a book on general528

relativity.529
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How can you possibly exclude “distance” and “time” from general relativity?530

Herman Minkowski predicted this exclusion in 1908, as Einstein531

started his seven-year trudge from special to general relativity.532

Minkowski declared, “Henceforth space by itself and time by itself are533

doomed to fade away into mere shadows, and only a kind of union of534

the two will preserve an independent reality.”535

So Minkowski saw this coming.536

Yes. We replace Minkowski’s word “space” with the more precise word537

“distance.” And get rid of his “doomed to fade” prediction, which has538

already taken place. Then Minkowski’s up-dated statement reads,539

“DISTANCE BY ITSELF AND TIME BY ITSELF ARE DEAD!540

LONG LIVE SPACETIME!”541

Spare me your dramatics. Do you mean to say that nowhere in describing542

general relativity do you write “the distance between these two events is 16543

meters” or “the time between these two events is six years”?544

Not unless we make a mistake.545

So if I catch you using either one of these words—“distance” or “time”—I can546

shout, “Gottcha!”547

Sure, if either word stands alone. Our book does talk about different548

kinds of distance and different kinds of time, but we try never to use549

either word by itself. Instead, we must always put a label on either550

word, even in the metric description of event separation.551

Okay Dude, what are the labels for a pair of events described by the metric552

itself?553

Differential or adjacent.554

Aha, now we’re getting somewhere. What do “differential” and “adjacent”555

mean?556

“Differential” refers to the zero-limit calculus separation between557

events used in a metric, such as metric (6) for flat spacetime or metric558

(9) for curved spacetime. “Adjacent” means the same, but we also use559

it more loosely to label the separation between events described by a560

local approximate metric, such as (7).561

Please give examples of “differential” separations between events in a metric.562

Only three possible kinds of separation: (1) Differential spacelike563

separation dσ. (2) Differential timelike separation dτ . And of course564

(3) differential lightlike—“null”—separation dσ = dτ = 0.565
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But each of those is on the left side of the metric. What about coordinates on566

the right side of the metric?567

You get to choose those coordinates yourself, so they have no direct568

connection to any physical measurement or observation.569

You mean I can choose any coordinate system I want for the right side of the570

metric?571

Almost. When you submit your set of global coordinates to Einstein’s572

equations—for example when Schwarzschild submitted his black-hole573

global coordinates—Einstein’s equations send back the metric. There574

are also a couple of simple requirements of coordinate uniqueness and575

smoothness (Section 5.8).576

What other labels do you put on “distance” and “time” to make them577

acceptable in general relativity?578

One is “wristwatch time” between events that can be widely separated579

along—and therefore connected by—a stone’s worldline. Also we will580

still allow measured coordinate differences ∆xinertial and ∆tinertial in a581

given local inertial frame, equation (7)—even though a purist will582

rightly criticize us because, even in special relativity, coordinate583

separations between events are different in rocket and laboratory584

frames.585

Tell me about Einstein’s equations, since they are so almighty important.586

Spacetime squirms in ways that neither a vector nor a simple calculus587

expression can describe. Einstein’s equations describe this squirming588

with an advanced mathematical tool called a tensor. (There are other589

mathematical tools that do the same thing.) After all the fuss, however,590

Einstein’s equations deliver back a metric expressed in simple calculus;591

in this book we pass up Einstein’s equations (until Chapter 22) and592

choose to start with the global metric.593

Okay, back to work: What meaning can you give to the phrase “the distance594

between two far-apart events,” for example: Event Number One: The star595

emits a flash of light. Event Number Two: That flash hits the detector in my596

telescope.597

Your statement tells us that the worldline of the light flash connects598

Event One and Event Two. On the way, this worldline may pass close599

to another star or galaxy and be deflected. The Universe expands a bit600

during this transit. Interstellar dust absorbs light of some frequencies,601

and also . . . .602

Stop, stop! I do not want all that distraction. Just direct that lightlike603

worldline through an interstellar vacuum and into my telescope.604
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Okay, but those features of the Universe—intermediate stars,605

expansion, dust—will not go away. Do you see what you are doing?606

No, what?607

You are making a model—some would call it a Toy Model—that uses608

a “clean” metric to describe the separation between you and that star.609

What you call “distance” springs from that model. Later you may add610

analysis of deflection, expansion, and dust to your model. Your final611

derived “distance” is a child of the final model and should be so labeled.612

To Hell with models! I want to know the Truth about the Universe.613

Good luck with that! See the star over there? Observationally we know614

exactly three things about that star’s location: (1) its apparent angle in615

the sky relative to other stars, (2) the redshift of its light, and (3) that616

its light follows a lightlike worldline to us. What do these observations617

tell us about that star? To answer this question, we must build a model618

of the cosmos, including—with Einstein’s help—a metric that describes619

how spacetime develops. Our model not only converts redshift to a620

calculated model-distance—note the label “model”—but also predicts621

the deflection of light that skims past an intermediate galaxy on its way622

to us, and so forth.623

What’s the bottom line of this whole discussion?624

The bottom line is that everyday ideas about the apparently simple625

words “distance” and “time” by themselves are fatally misleading in626

general relativity. Global coordinates connect local inertial frames, each627

of which we use to report all our measurements. We may give a remote628

galaxy the global radial coordinate r = 10 billion light years (with you,629

the observer, at radial coordinate r = 0), but that coordinate difference630

is not a distance.631

Wait! Isn’t that galaxy’s distance from us 10 billion light years?632

No! We did not say distance; we gave its global r-coordinate.633

Remember, coordinates are arbitrary. Never, ever, confuse a simple634

coordinate difference between events with “the distance” (or “the635

time”) between them. If you decide to apply some model to coordinate636

separations, always tell us what that model is and label the resulting637

separations accordingly. Again, “distance” by itself and “time” by itself638

have no place in general relativity.639

Okay, but I want to get on with learning general relativity. Are you going to640

bug me all the time with your picky distinctions between various kinds of641

“distances” and various kinds of “times” between events?642

No. The topic will come up only when there is danger of643

misunderstanding.644
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2.8 REVIEW EXERCISE645

Euclid’s Principle of Minimal Length vs. Einstein’s646

Principle of Maximal Aging647

FIGURE 9 Left panel: Euclidean plane showing straight line PQ and broken line PRQ.
Right panel: Spacetime diagram showing straight worldline PQ and broken worldline PRQ.

A. Consider Point P and Point Q along the y-axis of an (x, y) Cartesian648

coordinate system on a 2D Euclidean plane (Figure 9, left panel).649

Connect Point P to Point Q with a straight line and express the length650

of that line in terms of the coordinates of the two end points.651

Now introduce an intermediate Point R slightly removed from the y-axis along652

the x direction, so that the line PQ is changed into a broken line PRQ in the653

(x, y) diagram.654

B. Use the Pythagorean theorem to write an expression for the total length655

of broken line PRQ in terms of the coordinates of Points P, R, and Q.656

C. Show that the straight line PQ is shorter than the broken line PRQ.657

D. Describe limits, if any, on the angle that any line segment of this658

broken line can make with either the horizontal x or vertical y axis.659
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Summary: Principle of Minimal Length for Euclidean Geometry660

The length of a line that connects two points is a minimum if the line is661

straight.662

E. Next consider two Events P and Q along the t-axis of an (x, t)663

spacetime diagram in flat spacetime (Figure 9, right panel). Connect664

Point P to Point Q with a straight worldline and express the wristwatch665

time lapse for a stone which traverses that worldline in terms of the666

coordinates of the two event P and Q.667

Now introduce an intermediate Event R slightly removed from the t axis in the668

x direction, so that the worldline PRQ is changed into a broken line in the669

spacetime diagram.670

F. Use the interval to write the expression for the total wristwatch time of671

a stone that moves along the worldline PRQ in terms of the coordinates672

of Events P, R, and Q.673

G. Show that the straight worldline PQ has a greater wristwatch time than674

the broken worldline PRQ.675

H. Describe the limits, if any, on the angle that any segment of this broken676

worldline can make with either the horizontal x axis or the vertical t677

axis.678

Summary: Principle of Maximal Aging for Flat Spacetime679

The lapse of wristwatch time along a stone’s worldine that connects two events680

is a maximum if the worldline is straight.681

Statements in Items J, K, and L apply to both plots in Figure 9. The term682

path refers either to a Euclidean line or a spacetime worldline, and the term683

extremum refers either to a maximum or a minimum.684

J. Suppose the direct path is replaced with a path with several connected685

straight segments. Make an argument that the straight path still has686

the extremum property.687

K. Use the invariance principle to show that the straight path between688

endpoints P and Q does not need to lie along the vertical axis to satisfy689

the extremum property when compared with alternative paths made of690

several straight-line segments.691

L. Show that in the “calculus limit” of a path made of an unlimited692

number of straight segments, alternative paths between fixed endpoints693

must satisfy the extremum property when compared with the straight694

path.695
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