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C H A P T E R

3 Curving25

Edmund Bertschinger & Edwin F. Taylor *

In my talk ... I remarked that one couldn’t keep saying26

“gravitationally completely collapsed object” over and over.27

One needed a shorter descriptive phrase. “How about black28

hole?” asked someone in the audience. I had been searching29

for just the right term for months, mulling it over in bed, in30

the bathtub, in my car, wherever I had quiet moments.31

Suddenly this name seemed exactly right. ... I decided to be32

casual about the term “black hole,” dropping it into [a later]33

lecture and the written version as if it were an old family34

friend. Would it catch on? Indeed it did. By now every35

schoolchild has heard the term.36

—John Archibald Wheeler with Kenneth Ford37

3.1 THE SCHWARZSCHILD METRIC38

Spherically symmetric massive center of attraction?39

The Schwarzschild metric describes the curved, empty spacetime around it.40

In late 1915, within a month of the publication of Einstein’s general theory of41

relativity and just a few months before his own death from a battle-relatedEinstein to
Schwarzschild:
“splendid.”

42

illness, Karl Schwarzschild (1873-1916) derived from Einstein’s field equations43

the metric for spacetime surrounding the spherically symmetric black hole.44

Einstein wrote to him, “I had not expected that the exact solution to the45

problem could be formulated. Your analytic treatment of the problem appears46

to me splendid.”47

An isolated satellite zooms around a spherically symmetric massive body.48

After a few orbits we discover that the satellite’s motion stays confined to the49

initial plane determined by the satellite’s position, its direction of motion, and50

the center of the attracting body. Why? The reason is simple: symmetry! WithOrbits stay in a plane. 51

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. This draft may be duplicated for personal and class use.
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Box 1. Metric in Polar Coordinates for Flat Spacetime

dsr

FIGURE 1 Spatial separation between two points in
polar coordinates.

The metric for flat spacetime is:

dτ2 = dt2 − ds2 (flat spacetime) (1)

where ds is the spatial separation, expressed in Cartesian
coordinates as

ds2 = dx2 + dy2 (flat space) (2)

We look for a similar ds expression for two adjacent events
numbered 1 and 2, events separated by polar coordinate
increments dr and dφ (Figure 1).

Draw little arcs of different radii through events 1 and 2 to form
a tiny box, shown in the magnified inset. The squared spatial

separation between events 1 and 2 is—approximately—the
sum of the squares of two adjacent sides of the little box. For
a differential dφ, we are entitled to express the differential
space separation between event 1 and event 2 by the formula

ds2 = dr2 + r2dφ2 (flat space) (3)

This squared spatial separation is the space part of the
squared wristwatch time differential for flat spacetime

dτ2 = dt2 − dr2 − r2dφ2 (flat spacetime) (4)

This derivation is valid only when dφ is small—vanishingly
small in the calculus sense—so that the differential segment
of arc rdφ is indistinguishable from a straight line. There is no
such limitation to differentials for rectangular Cartesian space
coordinates in flat spacetime, so each d for differential in (2)
can be expanded to ∆, as it was in Section 1.10.

From Einstein’s general relativity equations, Schwarzschild
derived a generalization of (4) that goes beyond flat
spacetime and describes curved spacetime in the vicinity of
a spherically symmetric (thus non-spinning) uncharged black
hole.

respect to this initial plane there is no distinction between “up out of” and52

“down out of” the plane, so the satellite cannot choose either and must remain53

in that plane. The limitation of isolated particle and light motion to a single54

plane greatly simplifies our analysis of physical events in this book.55

We use polar coordinates (r, φ) for the black hole (Box 1), because polar56

coordinates reflect its symmetry on a plane through the black hole’s center;57

Cartesian coordinates (x, y) do not.58

Think of two adjacent events that lie on our equatorial r, φ plane through59

the center of the black hole. These events have differential coordinateSchwarzschild
timelike metric

60

separations dt, dr, and dφ. The Schwarzschild metric gives us the invariant61

dτ between this pair of events:62

dτ2 =

(
1− 2M

r

)
dt2 − dr2(

1− 2M

r

) − r2dφ2 (timelike) (5)

−∞< t <∞ and 0 < r <∞ and 0 ≤ φ < 2π

63

Equation (5) is the timelike form of the Schwarzschild metric, whose left side64

gives us the invariant differential wristwatch time dτ of a free stone that moves65

between a pair of adjacent events for which the magnitude of the first term on66
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the right side is greater than the magnitude of the last two terms. In contrast,67

think of a pair of events for which the magnitude of the last two terms on the68

right predominate. Then the invariant differential ruler distance dσ betweenSchwarzschild
spacelike metric

69

these events is given by the spacelike form of the Schwarzschild metric:70

dσ2 = −dτ2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dφ2 (spacelike) (6)

−∞< t <∞ and 0 < r <∞ and 0 ≤ φ < 2π

71

Neither a stone nor a light flash can move between an adjacent pair of events72

with spacelike separation. Instead, the separation dσ represents a differential73

ruler distance between two events. To make use of global metrics (5) and (6),74

we need to define carefully the meaning of global coordinates t, r, and φ.75

Section 3.2 shows how to measure mass in meters, so that 2M/r becomes76

unitless, as it must in order to subtract it from the unitless number one in the77

expression (1− 2M/r).78

Comment 1. Terminology: global metric79

We refer to either expression (5) or (6) as a global metric. Professional general80

relativists call these expressions line elements; they reserve the term metric forMeaning of
“global metric”

81

the collection of coefficients of the differentials—such as (1− 2M/r), the82

coefficient of dt2. We find the term metric to be simple, short, and clear; so in83

this book we use a slightly-deviant terminology and call an expression like (5) or84

(6) the global metric.85

DEFINITION 1. Invariant (general relativity)86

Section 1.2 defined an invariant in special relativity as a quantity that87

has the same value when calculated using different local inertial88

coordinates. An invariant in general relativity is a quantity that has theDefinition: invariant
in general relativity

89

same value when calculated using different global coordinate systems.90

Equations (5) and (6) calculate invariants dτ and dσ, respectively, using91

Schwarzschild global coordinates. Box 3 in Section 7.5 shows that an92

infinite number of global coordinate systems exist for the non-spinning93

black hole (indeed, for any isolated black hole). Calculation of dτ using94

any of these global coordinate systems delivers the same—the95

invariant!—value of dτ given by metrics (5) and (6).96

Two coefficients in the Schwarzschild metric contain the expression97

(1− 2M/r), which goes to zero when r → 2M , thus sending the first metric98

coefficient to zero on the right side of the metric and the magnitude of theEvent horizon 99

second coefficient to infinity. This warns us about trouble at r = 2M , which we100

describe below. To the global spacetime surface at r = 2M we assign the name101

event horizon, for reasons that will become clear in later sections.102

It is important to realize how rare and wonderful is the Schwarzschild103

metric. Einstein’s set of field equations is nonlinear and can be solved in104
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simple form only for physical systems with considerable symmetry.105

Schwarzschild used the symmetry of an isolated spherical non-spinning centerSimple global
metrics are rare.

106

of attraction in the derivation of his metric. This symmetry is broken—and no107

simple global metric exists—when we place a black hole on every street corner,108

although in principle a computer can provide a numerical solution of Einstein’s109

field equations for any distribution of mass/energy/pressure. It is a measure of110

the scarcity of physical systems with simple metrics that almost fifty years111

passed before Roy Kerr found a (relatively!) simple metric for a spinning black112

hole in 1963 (Chapters 17 through 21).113

Further investigation shows that the Schwarzschild metric plus theSchwarzschild
description of
spacetime is
complete.

114

connectedness (“topology”) of the region provides a complete description of115

spacetime external to any isolated spherically symmetric, uncharged massive116

body—and everywhere around such a black hole except at its central117

singularity (at r = 0), where spacetime curvature becomes infinite and general118

relativity fails. Every feature of spacetime around this kind of black hole is119

described or implied by the Schwarzschild metric. This one expression tells it120

all!121

122

QUERY 1. Flat spacetime as r →∞123

Show that as r →∞, Schwarzschild metric (5) becomes metric (4) for flat spacetime.124

125

We will derive the Schwarzschild metric in Chapter 22. Even now,Ways in which the
Schwarzschild metric
makes sense:

126

however, we should not accept it uncritically. Here we check three ways in127

which it makes sense.128

First, the expression (1− 2M/r) that appears in both the dt term and1. Depends only on
r coordinate.

129

the dr term depends only on the r coordinate, not on the angle φ. How come?130

Because we are dealing with a spherically symmetric body, an object for which131

there is no way to tell one side from the other side or the top from the bottom.132

This impossibility is reflected in the absence of any direction-dependent133

coefficient in the metric.134

Second, the Schwarzschild metric uses coordinates that clearly show2. Goes to inertial
metric for zero M.

135

spacetime is flat when M → 0, that is when there is no center of attraction. In136

this limit, the Schwarzschild metric (5) goes smoothly into the inertial metric137

(4) for flat spacetime.138

Third, even when M is nonzero the Schwarzschild metric (5) reduces to a3. Goes to local
inertial metric
for large r.

139

local flat spacetime metric (4) very far from the black hole. The expression140

(1− 2M/r)→ 1 when r →∞.141

Timelike and spacelike Schwarzschild metrics (5) and (6) describe the142

spacetime external to any isolated spherically symmetric, uncharged massive143

body. They apply with high precision to spacetime outside a slowly revolving144

massive object such as Earth or an ordinary star like our Sun. Think of aSchwarzschild
metric applies only
outside the surface.

145

stone moving outside such an object; it makes no difference what the146

coordinates are inside the attracting spherical body because the stone never147

gets there; before it can, it collides with the surface—in the short term, our148
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Box 2. More About the Black Hole
John Archibald Wheeler adopted the term “black hole” in
1967 (initial quote), but the concept itself is old. As early
as 1783, John Michell argued that light must “be attracted
in the same manner as all other bodies” and therefore, if
the attracting center is sufficiently massive and sufficiently
compact, “all light emitted from such a body would be made
to return toward it.” Pierre-Simon Laplace came to the same
conclusion independently in 1795 and went on to reason that
“it is therefore possible that the greatest luminous bodies in
the universe are on this very account invisible.”

Michell and Laplace used Isaac Newton’s “action-at-a-
distance” theory of gravity in analyzing the escape of light
from, or its capture by, an already-existing compact object.
But is such a static compact object possible? In 1939, J.
Robert Oppenheimer and Hartland Snyder published the
first detailed treatment of gravitational collapse within the
framework of Einstein’s theory of gravitation. Their paper
predicts the central features of a non-spinning black hole.

Ongoing theoretical study has shown that the black hole is
the result of natural physical processes. A nonsymmetric
collapsing system is not necessarily blown apart by its
instabilities but can quickly—in a few seconds measured on
a remote clock!—radiate away its turbulence as gravitational
waves and settle down into a stable structure.

An uncharged spherically symmetric black hole is completely
described by the Schwarzschild metric (plus the spacetime
topology), which was derived from Einstein’s field equations
by Karl Schwarzschild and published in 1916. The energy
of such a non-spinning black hole cannot be milked for use
outside its event horizon. For this reason, a non-spinning
black hole deserves the name “dead black hole.”

In contrast to the non-spinning dead black hole, the typical
black hole, like the typical star, has a spin, sometimes a large

spin. The energy stored in this spin, moreover, is available
for doing work: for driving jets of matter and for propelling a
spaceship. In consequence, the spinning black hole deserves
and receives the name “live black hole.”

The spinning black hole—or any spinning mass—drags
everything in its vicinity around with it, including spacetime
(Chapters 17 through 21). Near Earth this dragging is a
small effect. Theory predicts that, near a rapidly-spinning
black hole, such effects can be large, even irresistible,
dragging along nearby spaceships no matter how powerful
their rockets.

Black holes appear to be divided roughly into two groups,
depending on their source: Those that result from the collapse
of a single star have several times the mass our Sun. Others
formed near the centers of galaxies can be monsters with
millions—even billions—of times the mass of our Sun. These
black holes may even shape the evolution of galaxies.

In 1963 Roy P. Kerr derived a metric for an uncharged
spinning black hole. In 1967 Robert H. Boyer and Richard W.
Lindquist devised a simple and convenient global coordinate
system for the spinning black hole. In 2000 Chris Doran
published the global coordinate system for a spinning black
hole that we use in this book. In 1965 Ezra Theodore Newman
and others solved the Einstein equations for the spacetime
geometry around an electrically charged spinning black hole.

Subsequent research shows that for a steady-state black
hole of specified mass, charge, and angular momentum,
Kerr-Newman geometry is the most general solution to
Einstein’s field equations. The variety, detail, and beauty of
everything that forms or falls into a black hole disappears—at
least according to classical (non-quantum) physics—leaving
only mass, charge, and angular momentum. John Wheeler
summarized this finding in the phrase, “The black hole has no
hair,” which is known as the no-hair theorem.

Sun can be thought of as in equilibrium. The more compact the massive body,149

however, the larger the external region the stone can explore. Our Sun’s150

surface is 696 000 kilometers from its center. A cool white dwarf with the mass151

of our Sun has a surface r-coordinate of about 5000 kilometers, roughly that of152

Earth. The Schwarzschild metric describes spacetime geometry in the region153

external to that r-coordinate. A neutron star with the mass of our Sun has a154

surface r-coordinate of about 10 kilometers—the size of a typical city—so the155

stone can come even closer and still be “outside,” that is, in the region156

described correctly by the Schwarzschild metric (if the neutron star is not157

spinning too fast).158
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Box 3. Singularities: Fictitious or Real?

FIGURE 2 Polar coordinates on a flat Euclidean surface
have a coordinate singularity at the center. Obviously r = 0
there, but what is its value of φ? That singularity, however, is
fictitious because there is no space singularity at that point.

How do we know that the blow-up of the term dr2/(1 −
2M/r) at r = 2M in the Schwarzschild metric does not
signal a physical singularity? Why is this blow-up no threat to
an observer falling through the event horizon—other than its
one-way nature and the gradually-increasing tidal forces she
feels as she descends? Einstein and others initially thought
that the Schwarzschild coordinate singularity at the event
horizon had a physical reality, but it does not.

Similarly, how do we know that the blow-up of the term
(1− 2M/r)dt2 at r = 0 is lethal to all comers? How can we
understand the difference between the two discontinuities in
Schwarzschild coordinates?

Draw an analogy to the polar coordinate system (r, φ) on
a flat Euclidean surface (Figure 2). The radial coordinate of

the origin is clearly r = 0, but what is the polar angle φ
there? Answer: The origin is singular in angle φ. Proof: Start
at the right on the horizontal axis with label φ = 0; move
leftward along this axis and through the origin at r = 0. At
this origin the axis label suddenly flips to φ = 180◦. There
is a discontinuity of φ at the origin. The coordinate φ violates
the requirements of uniqueness and smoothness.

The problem here is not Euclidean space, it is our silly (r, φ)

coordinate system. In contrast, Cartesian coordinates x =
r cosφ and y = r sinφ are perfectly unique and continuous
at all points on the flat surface, including the origin.

Is there some way to show that there is no physical singularity
at the event horizon of a non-spinning black hole? Yes, by
finding a coordinate system which is perfectly smooth at the
event horizon, in the same way that Cartesian coordinates in
Euclidean space are perfectly smooth at the origin. In Chapter
7 we develop what we call global rain coordinates. At the
event horizon no term blows up in the metric expressed in
global rain coordinates. Global rain coordinates assign unique
labels to each event and are smooth and continuous at the
event horizon and all the way down to (but not including)
r = 0.

What about the location at the center of a black hole? No
coordinate system can be smooth at r = 0, because the
so-called Riemann curvature is infinite there. The Riemann
curvature, discovered in the 1860s by mathematician
Bernhard Riemann, has a value at every spacetime event
that is independent of the coordinate system. The Riemann
curvature is infinite only at a physical cusp or singularity,
such as the black hole singularity at r = 0. In contrast, the
Riemann curvature is finite at r = 2M .

A wonderful thing about a black hole is that it has no physical surface andSchwarzschild
describes all
spacetime around
the black hole
outside the singularity.

159

no matter with which to collide. A stone can explore all of spacetime (except160

at r = 0) without bumping into a surface—since there is no surface at all.161

Objection 1. How can a black hole have “no matter with which to collide”?162

If it isn’t made of matter, what is it made of? What happened to the star or163

group of stars that collapsed to form the black hole? Basically, how can164

something have mass without being made of matter?165

We think that everything that collapses into the black hole is effectively still166

there in some form, inducing the curvature of surrounding spacetime. This167

mass is crushed into a singularity at the center—along with the probe we168
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sent in to explore it. How do we know this? We don’t. What can “crushed to169

a singularity” possibly mean? We don’t know. Startling? Crazy? Absurd?170

Welcome to general relativity!171

Objection 2. The global metric comes from Einstein’s equations, which172

you say we will derive in Chapter 22. In the meantime you give us only173

global metrics. Why should we believe you, and why are you keeping the174

fundamental equations from us?175

Einstein’s equations are most economically expressed in advanced176

mathematics such as tensors, and deriving a global metric from them is a177

bit tricky. In contrast, the global metric expresses itself in differentials, the178

working mathematics of most technical professions, and leads directly to179

measurable quantities: wristwatch time and ruler distance. We choose to180

start with the directly useful.181

Next we examine the meaning of mass in units of length, so that the182

expression 1− 2M/r in both the first and second term in the metric183

coefficients can have the same units, namely no units at all.184

3.2 MASS IN UNITS OF LENGTH185

Want to reduce clutter in the metric? Then measure mass in meters!186

The description of spacetime near any gravitating body is simplest when we187

express the mass M of that body in spatial units—in meters or kilometers.188

This section derives the conversion factor between, for example, kilograms and189

meters.190

Earlier we wanted to measure space and time in the same unit (Section191

1.2), so we used the conversion factor c, the speed of light. Conversion from192

kilograms to meters is not so simple. Nevertheless, here too Nature provides aMeasure mass
in meters.

193

conversion factor, a combination of the speed of light and Newton’s universal194

gravitation constant G.195

Newton’s theory of gravitation predicts that the gravitational force196

between two spherically symmetric masses Mkg and mkg is proportional to the197

product of these masses and inversely proportional to the square of the198

Euclidean distance r between their centers:199

FNewtons = −GMkgmkg

r2
(Newton, conventional units) (7)

In this equation G is the “constant of proportionality,” whose units depend on200

the units with which mass and spatial separation are measured. The numerical201

value of G in conventional units is:202

G = 6.67× 10−11 meter3

kilogram second2 (8)
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Divide G by the square of the speed of light c2 to find the conversion factorNumerical
values of G

203

that translates the conventional unit of mass, the kilogram, into what we have204

already chosen to be the natural unit, the meter:205

G

c2
=

6.67× 10−11 meter3

kilogram second2

8.9876× 1016 meter2

second2

(9)

= 7.42× 10−28 meter

kilogram

Now convert from mass Mkg measured in conventional units of kilograms to206

mass M in meters by multiplication with this conversion factor:207

M ≡ G

c2
Mkg =

(
7.42× 10−28 meter

kilogram

)
Mkg (10)

Why make this conversion? Because it allows us to get rid of the symbols GMass in meters
unclutters equations.

208

and c2 that otherwise clutter up our equations.209

Table 1 displays in both kilograms and meters the masses of Earth, Sun,210

the huge spinning black hole at the center of our galaxy, and the mass of an211

even larger black hole in a nearby galaxy. For each of these objects the global212

r-coordinate of the event horizon is twice its mass in meters. To express their213

masses in meters cuts planets and stars down to size!214

Objection 3. This is nuts! Stars and planets are not the same as space.215

No twisting or turning on your part can make mass and distance the same.216

How can you possibly propose to measure mass in units of meters?217

True, mass is not the same as spatial separation. Neither is time the same218

as space: The separation between clock ticks is different from meterstick219

lengths! Nevertheless, we have learned to use the conversion factor c to220

measure both time and space in the same unit: light-years of spatial221

separation and years of time, for example, or meters of spatial coordinate222

separation and meters of light-travel time. Payoff? The result simplifies our223

equations.224

There are two primary birthplaces for black holes: The first is the collapse225

of a single star, which produces a black hole with mass equal to a modest226

multiple of the mass of our Sun. The second birthplace is accumulation in a227

galaxy, which produces a black hole with mass equal thousands to billions of228

the mass of our Sun. Typically, a small galaxy contains a smaller black hole,229

for example 50,000 times the mass of our Sun, while a large black hole, such as230

the last entry in Table 1, has a mass billions of times the mass of our Sun.231

Objection 4. You are being totally inconsistent about mass! In Chapter 1232

we heard about the mass m of a stone; there you said nothing about mass233

in units of length. Now you define M with length units. Make up your mind!234
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TABLE 3.1 Masses of some astronomical objects.

Object Mass in kilograms Geometric
measure of mass

Equatorial r-coordinate

Earth 5.9742× 1024

kilograms
4.44 × 10−3

meters or 0.444
centimeters

6.371 × 106 meters
or 6371 kilometers

Sun 1.989×1030 kilograms 1.477× 103 meters
or 1.477 kilometers

6.960 × 108

meters or 696
000 kilometers

Black hole at center of
our galaxy

8× 1036 kilograms
(4× 106 Sun masses)

6× 109 meters

Black hole in galaxy
NGC 4889

4.2 × 1040 kilograms
(21× 109 Sun masses)

3.1× 1013 meters

Excellent point. The difference between the mass M of a center of235

attraction and the mass m of a stone is important. First, a stone is a “free236

particle . . . whose mass warps spacetime too little to be measured” (inside237

the back cover). Second, most often we combine the stone’s mass m with238

another quantity in such a way that the result is a unitless ratio—for239

example E/m—by choosing the same unit in numerator and denominator.240

It does not matter which unit we use—joules or kilograms or electron-volts241

or the mass of the proton—as long as we use the same unit in numerator242

and denominator.243

In contrast to the stone, the mass of a star or black hole does curve and244

warp spacetime. In this book the capital letter M always signals this fact.245

Here too we can arrange things so that M appears in a unitless ratio, such246

as 2M/r, in which case M and r must have the same unit, which we247

choose to be meters.248

Objection 5. Okay, terrific, and this gives me a great idea: Why not249

simplify things even more by using unitless spacetime coordinates. Divide250

the Schwarzschild metric through by M2, then define dimensionless251

coordinates τ∗ ≡ τ/M and t∗ ≡ t/M and r∗ ≡ r/M . Here the asterisk252

(*) reminds us that we are using dimensionless coordinates. Now the253

timelike Schwarzschild metric takes the simplest possible form:254

dτ∗2 =

(
1− 2

r∗

)
dt∗2 − dr∗2(

1− 2

r∗

) − r∗2dφ2 (11)

(unitless coordinates)

This notation has two big advantages: First, our equations are no longer255

cluttered with the symbol M , just as we have already eliminated from our256

equations the clutter of constants G and c. Second, metric (11) applies257

automatically to all black holes, of whatever mass M .258



May 11, 2017 11:00 Curving170511v1 Sheet number 11 Page number 3-10 AW Physics Macros

3-10 Chapter 3 Curving

Box 4. “Our Little Jugged Apocalypse”
We tend to think of a black hole as a large object, especially
the “monster” at the center of our galaxy (Table 1). But the
word large invites the question, “Large compared to what?”
The diameter of the black hole in our galaxy is about 10−6

light year. Our galaxy, a typical one, is some 105 light years
in diameter. Any object a factor 10−11 the size of a galaxy
must be considered a relative dot in the galactic scheme of
things. Its relatively small size allows us to call the black hole

our “little jugged apocalypse,” a phrase the writer John Updike
uses to describe the view into the portal of a front-loading
clothes-washing machine. Conveniently, spacetime curvature
increases from zero far from the isolated black hole to an
unlimited value at its singularity. This makes the black hole a
useful example to teach large swaths—but not all—of general
relativity.

Originally we used your idea for a few chapters, but then returned these259

chapters to our current notation, which has several advantages: (1)260

Keeping the M allows us to check units in every equation. An equation261

can be wrong if the units are correct, but it is always wrong if the units are262

incorrect! (2) We can return to flat spacetime and special relativity simply263

by letting M → 0; a second useful check. (3) We prefer to be continually264

reminded of the concrete heft—the observed massiveness—of265

astronomical objects: stars and black holes. For these reasons we choose266

to retain coordinates in units of length and the explicit symbol M in our267

equations.268

How does Newton’s law of gravitation change when we express mass in269

meters? Think of a stone of mass mkg near a center of attraction of mass Mkg.Newton’s gravity
with mass in meters

270

Rewrite Newton’s second law of motion (F = ma) for this case, using the271

gravitational force equation (7), with mkggconv on the left, where gconv is the272

local acceleration of gravity. The stone’s mass mkg cancels from both sides of273

the resulting equation. A minus sign signals that the acceleration is in the274

decreasing r direction.275

gconv = −GMkg

r2
(Newton, conventional units) (12)

Now divide both sides of (12) by c2 so as to obtain the conversion factor of276

equation (9). We can then write277

g ≡ gconv
c2

= −M
r2

(Newton, mass in meters) (13)

Remember that this is an equation of Newton’s mechanics, not an equation of278

general relativity. The quantities M and r both have the unit meter, so g hasNewton’s gEarth

with mass in meters
279

the unit meter−1. Substitute into (13) the values of MEarth and rEarth from280

inside the front cover to obtain the value for the acceleration of gravity gEarth281

at Earth’s surface in units of inverse meters:282

gEarth = −MEarth

r2Earth

= −1.09× 10−16 meter−1 (Newton, mass in meters)

(14)
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FIGURE 3 US Pavillion “geodesic dome” designed by R. Buckminster Fuller for the 1967
International and Universal Exposition in Montreal. Place a clock at every intersection of rods
on the outer surface of this sphere to create a small model of our imaginary nested spherical
shells concentric to a black hole. Image courtesy of the Estate of R. Buckminster Fuller.

Does this numerical value seem small? It is the same acceleration we are used283

to, just expressed in different units. To jump from a high place on Earth is284

dangerous, whatever units you use to describe your motion!285

Next we continue the explanation of Schwarzschild metrics (5) and (6)286

with a definition of the global radial coordinate r in these equations.287

3.3 THE GLOBAL SCHWARZSCHILD r-COORDINATE288

Measure the r-coordinate while avoiding the trap in the center289

Section 2.5 asked, “Does the black hole care what global coordinate system we290

use in deriving our global spacetime metric?” and answered, “Not at all!”291

General relativity allows us to use any global coordinate system whatsoever,Why Schwarzschild
global coordinates?

292

subject only to some requirements of smoothness and uniqueness (Section 5.9).293

Next question: Since Schwarzschild had (almost) complete freedom to choose294

his global coordinates t, r, and φ, why did he choose the particular coordinates295

that appear in (5) and (6)? Next answer: Schwarzschild’s global coordinates296

take advantage of the spherical symmetry of a non-spinning black hole. When297

these coordinates are submitted to Einstein’s equations, they return metrics298

that are (relatively!) simple. In this and the following section we introduce and299

describe Schwarzschild global coordinates.300
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Start with Schwarzschild’s r coordinate: Take the center of attraction toSpherical shell
of rods and clocks

301

be a black hole with the same mass as our Sun. In imagination, build around302

it a spherical shell of rods fitted together in an open mesh (Figure 3). On this303

shell mount a clock at every intersection of these rods. The rods and clocks of304

such a collection of shells provides one system of coordinates to determine the305

location of events that occur outside the event horizon.306

How shall we define the size of the sphere formed by this latticework shell?We cannot measure
r-coordinate directly.

307

Shall we measure directly the radial separation between the sphere’s surface to308

its center? That won’t do. Yes, in imagination we can stand on the shell. Yes,309

we can lower a plumb bob on a “string.” But for a black hole, any string, any310

tape measure, any steel wire—whatever its strength—is relentlessly torn apart311

by the unlimited pull the black hole exerts on any object that dips close312

enough to its center. And even for Earth or Sun, the surface itself keeps us313

from lowering our plumb bob directly to the center.314

Therefore try another method to define the size of the spherical shell.Derive r-coordinate
from measurement
of circumference.

315

Instead of lowering a tape measure from the shell, run a tape measure around316

it in a great circle. The measured distance so obtained is the circumference of317

the sphere. Divide this circumference by 2π = 6.283185... to obtain a distance318

that would be the directly-measured r-coordinate of the sphere if the space319

inside it were flat. But that space is not flat, as we shall see. Yet this procedure320

yields the most useful known measure of the size of the spherical shell.321

The “radius” of a spherical object obtained by this method of measuring322

has acquired the name r-coordinate, because it is no genuine Euclidean323

radius. We call it also the reduced circumference, to remind us that it is324

derived (“reduced”) from the circumference:Definition:
r-coordinate

325

r-coordinate ≡ reduced circumference (15)

≡ measured circumference

2π

We sometimes use the expression Schwarzschild-r, which labels the global326

coordinate system of which r is a member. From now on we try not to use the327

word “radius” for the r-coordinate, because it can confuse results for flat328

spacetime with results for curved spacetime.329

During construction of each shell the contractor stamps the value of its330

r-coordinate on it for all to see.331

Objection 6. Aha, gottcha! To define the r-coordinate in (15), you332

measure the length of the entire circumference of a spherical shell. Near a333

massive black hole, this circumference could be hundreds of kilometers334

long. Yet from the beginning you say, ”Report every measurement using a335

local inertial frame.” Near a black hole a local inertial frame is tiny336

compared with the length of this circumference. You do not follow your own337

rules for measurement.338
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FIGURE 4 The scale of some objects described by physics. Objects close to the diagonal
line are those for which correct predictions require general relativity. See Box 5. Figure adapted
from the textbook Gravity by James Hartle.

Guilty as charged! We failed to spell out the process: Use a whole string of339

overlapping local inertial frames parked around the circumference of the340
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Box 5. When is General Relativity Necessary?
When is general relativity required to describe and predict
accurately the behavior of structures and phenomena in our
Universe? See Figure 4.

ORDINARY STAR. An ordinary star like our Sun does not
require general relativity to account for its development,
structure, or physical properties. Like all massive centers of
attraction, however, it does deflect and focus passing light in
ways accounted for by general relativity (Chapter 13).

WHITE DWARF. A white dwarf is the burned out cinder of
an ordinary star, with a mass approximately equal to that of
our Sun and r-coordinate of its surface comparable to that
of Earth. General relativity is not required to account for the
structure of the white dwarf but is needed to predict stability,
especially near the so-called Chandrasekhar limit of mass—
about 2.4 times the mass of our Sun—above which the white
dwarf is doomed to collapse.

NEUTRON STAR. A neutron star can result from the collapse
of a white dwarf star. Its mass is approximately that of our

Sun with an r-coordinate of its surface about 10 kilometers,
the size of a city. General relativity significantly affects the
structure and oscillations of the neutron star. Emission of
gravitational waves (Chapter 16) may damp out non-radial
vibrations.

BLACK HOLE. “The physics of black holes calls on Einstein’s
description of gravity from beginning to end.” (Misner, Thorne,
and Wheeler)

GRAVITY WAVES. We have observed gravitational radiation
predicted by general relativity.

THE UNIVERSE. Models of the Universe as a single structure
employ general relativity (Chapters 14 and 15). It seems
increasingly likely that general relativity correctly accounts
for non-quantum features of the Universe, but it remains
possible that general relativity fails over these immense spans
of spacetime and must be replaced by a more general theory.

spherical shell, then define the circumference to be the summed measured341

distances across each of these local inertial frames. In practice this342

procedure is awkward, but in principle it avoids your otherwise valid343

objection.344

Think of building two concentric shells, a lower shell of reducedDirectly-measured
separation between
nested shells is greater
than the difference in
their r-values.

345

circumference rL and a higher shell of reduced circumference rH, such that the346

difference in reduced circumference rH − rL equals 100 meters. Stand on the347

higher shell and lower a plumb bob, and for the first time measure directly the348

radial separation perpendicularly from the higher shell to the lower one. Will349

we measure a 100-meter radial separation between our two shells? We would if350

space were flat. But outside a massive body space is not flat. The relation351

between global differential dr and measured radial differential dσ comes from352

the spacelike version of the Schwarzschild metric (6) with dt = dφ = 0.353

dσ =
dr(

1− 2M

r

)1/2
(radial shell separation, dt = dφ = 0) (16)

We note immediately that for the radial shell separation dσ to be a real354

quantity, we must have r > 2M ; otherwise the square root in the denominator355

has an imaginary value. This is an indication that shells can be built only356

outside the event horizon (Section 6.7).357

Outside the event horizon, the magnitude of the denominator on the right358

side of (16) is always less than one. Hence Schwarzschild geometry tells us that359
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every radial differential increment dσ is greater than the corresponding360

differential increment dr of the reduced circumference. Therefore the summed361

(integrated) measureable distance between our two shells is greater than 100362

meters, even though their circumferences differ by exactly 2π×100 meters. This363

discrepancy between measured separation and difference in global r-coordinate364

provides striking evidence for the curvature of space. See Sample Problem 1.365

Built around our Sun, the r-coordinate of the inner shell cannot be lessSmall effect
near our Sun

366

than that of our Sun’s surface, 695 980 kilometers. Around this inner shell we367

erect a second one—again in imagination—of r-coordinate 1 kilometer greater:368

695 981 kilometers. The directly-measured distance between the two would be369

not 1 kilometer, but 2 millimeters more than 1 kilometer.370

How can we get closer to the center of a stellar object with mass equal to371

that of our Sun—but still remain external to the surface of that object? A372

white dwarf and a neutron star each has roughly the same mass as our Sun,373

but each is much smaller than our Sun. So we can—in principle—conduct a374

more sensitive test of the nonflatness of space much closer to the centers ofGet closer
to the center.

375

these objects while staying external to them (Box 5). The effects of the376

curvature of space are much greater near the surface of a white dwarf than near377

the surface of our Sun—and greater still near the surface of a neutron star.378

Objection 7. Why not define the r-coordinate differently—call it rnew—in379

terms of the directly-measured distance between two adjacent shells. For380

example, we could give the innermost shell at the event horizon the radial381

coordinate rnew = 2M , and the next shell rnew = 2M + ∆σ, where ∆σ382

is the directly-measured separation between that shell and the innermost383

shell. And so on. That would eliminate the awkwardness of your quoted384

results.385

You can choose (almost) any global coordinate system you want, but the386

one you suggest is inconvenient. First, you cannot escape the deviation387

from Euclidean geometry imposed by curvature; your definition leads to a388

calculated circumference 2πrnew that is different from the389

directly-measured one. Second, outside the event horizon your definition is390

awkward to carry out, since it requires collaboration between observers on391

different shells. Third, how is your definition applied inside the event392

horizon, where no shells exist? (Box 7 in Section 7.8 shows how to393

measure the Schwarzschid reduced circumference r inside the event394

horizon.) Finally, your definition of rnew, when submitted with t and φ to395

Einstein’s equations, results in a different metric—a more complicated396

one—which would be more inconvenient to use than the Schwarzschild397

global metric.398

Turn attention now to a black hole of mass M . Close to it the departureHuge effect
near black hole

399

from flatness is much larger than it is anywhere around a white dwarf or a400

neutron star. Construct an inner shell having an r-coordinate, a reduced401

circumference, of 3M . Let an outer shell have an r-coordinate of 4M . In402

contrast to these two r-coordinates, defined by measurements around the two403

shells, the directly-measured radial distance between the two shells is 1.542M ,404
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Sample Problem 1. “Space Stretching” Near a Black Hole
Here we verify the statement near the end of Section 3.3
that for a black hole of mass M , the directly-measured radial
distance calculates as 1.542M between the lower shell at r-
coordinate rL = 3M and the higher shell at r-coordinate
rH = 4M . In Euclidean geometry this measured distance
would be 1.000M , but not in curved space!

SOLUTION Equation (16) gives the radial differential dσ
between shells separated by a differential dr of the global
radial coordinate r. The term 2M/r changes significantly
over the range from r = 3M to r = 4M , so our “summation”
must be an integral. Integrating (16) from lower r-coordinate
rL = 3M to higher r-coordinate rH = 4M yields:

σ =

rH∫
rL

dr(
1 −

2M

r

)1/ 2

=

rH∫
rL

r1/2dr

(r − 2M)1/ 2
(17)

This integral is not in a common table of integrals, so make the
substitution r = z2, from which dr = 2zdz. The resulting
integral has the solution:

σ =

zH∫
zL

2z2dz(
z2 − 2M

)1/2 (18)

=
[
z(z2 − 2M)1/2 + 2M ln

∣∣∣z + (z2 − 2M)1/2
∣∣∣]zH

zL

Here the symbol ln (spelled “ell” “en”) represents the natural
logarithm (to the base e) and vertical-line brackets indicate
absolute value. Substitute the values

zL = (3M)1/2 and zH = (4M)1/2

and recall that for logarithms, ln(B) − ln(A) = ln(B/A).
The result is

σ = 1.542M (radial, exact) (19)

Here the symbol σ predicts the exact radial separation
between these shells measured by the shell observer who
uses a short ruler, say one-centimeter long, laid end to end
many times to find a total measured distance. This exact
result is radically different from 1.000M predicted by Euclid.

compared to the Euclidean-geometry figure of 1.000M (Sample Problem 1). At405

this close location, the curvature of space results in measurements quite406

different from anything that textbook Euclidean geometry would lead us to407

expect. We call this effect the stretching of space.408

Objection 8. WHY is the directly-measured distance between spherical409

shells greater than the difference in r coordinates between these shells? Is410

this discrepancy caused by gravitational stretching or compression of the411

measuring rods?412

No, the quoted result assumes rigid measuring equipment. In practice, of413

course, a measuring rod held by the upper end will be subject to414

gravitational stretching (or compression if held by the lower end). Make the415

rod short enough; then gravitational stretching is unimportant. Now count416

the number of times the rod has to be moved end to end to cross from one417

shell to the other.418

Objection 9. Are you refusing to answer my question? What CAUSES the419

discrepancy, the fact that the directly-measured distance between420

spherical shells is greater than the difference in r coordinates between421

these shells? WHY this discrepancy?422
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Sample Problem 2. Our Sun Causes Small Curvature
The Schwarzschild metric function (1 − 2M/r) gauges the
difference between flat and curved spacetime. How far from
the center of our Sun must we be before the resulting
curvature becomes extremely small or negligible?

A. As a first example, find the r-coordinate from a point mass
with the mass of our Sun (M ≈ 1.5 × 103 meters) such that
the metric function differs from the value one by one part in a
million. Compare this r-coordinate to the actual r-coordinate
of the surface of our Sun (rSun ≈ 7 × 108 meters).

B. As a second example, find the radial r-coordinate from
our Sun such that the metric function differs from the value
one by one part in 100 million. Compare the value of this
r-coordinate with the average r-coordinate of Earth’s orbit
(r ≈ 1.5 × 1011 meters).

SOLUTIONS
A. We want (1 − 2M/r) ≈ 1 − 10−6, which yields

r ≈
2M

10−6
= 2 × 1.5 × 103 × 106meters (20)

= 3 × 109meters

This r-coordinate is approximately four times the r-coordinate
of our Sun’s surface.

B. In this case we want (1 − 2M/r) ≈ 1 − 10−8, so

r ≈
2M

10−8
= 2 × 1.5 × 103 × 108 meters (21)

= 3 × 1011 meters

which is approximately twice the r-coordinate of Earth’s orbit.

A deep question! Fundamentally, this discrepancy shatters the notion of423

Euclidean space. We are faced with a weird measured result, which we424

can summarize with the statement, “Mass stretches space.” Your question425

“Why?” is not a scientific question, and science cannot answer it. We know426

only observed results and their derivation from general relativity. Does the427

following satisfy you? Space stretching causes the discrepancy! Section428

3.8 exhibits one way to visualize this stretching.429

3.4 THE GLOBAL SCHWARZSCHILD t-COORDINATE430

Freeze global space coordinates; examine the warped t-coordinate.431

It is not enough to know the results of curvature on the r-coordinate alone. ToTo describe orbits,
we need curvature
of spaceTIME.

432

appreciate how the grip of spacetime tells planets how to move requires us to433

understand how curvature affects the global t-coordinate as well. The434

coordinate differential dt appears on the right side of the Schwarzschild metric.435

Basically, Schwarzschild’s definition of the t-coordinate was arbitrary, like the436

definition of every global coordinate.437

How does Schwarzschild coordinate differential dt relate to the differential438

wristwatch time dτ between two successive events that occur at at fixed r- andRelation between
dτ and dt

439

φ-coordinates? The coordinate differentials dr and dφ are both equal to zero440

for that pair of events. Then the interval between ticks is the wristwatch time441

derived from metric (5), that is:442

dτ =

(
1− 2M

r

)1/2

dt (stationary clock: dr = dφ = 0) (22)

Equation (22) shows that far from a black hole (r →∞), Schwarzschild-t443

coincides with the time of a shell clock located there. This is an important,444
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but accidental, convenience of Schwarzschild’s choice of global t-coordinate. It445

is not true for the metrics of many other global coordinate systems for the446

non-spinning black hole.447

Now look at the prediction of equation (22) closer to a black hole—but448

still outside the event horizon. There the Schwarzschild coordinate differentialSlogan:
“A clock at
smaller r
runs slower.”

449

dt will be larger than the differential wristwatch time dτ measured by a clock450

at rest on the shell at that r-coordinate. Smaller wristwatch time dτ between451

two standard events leads to the useful but somewhat imprecise slogan, A452

clock closer to a center of attraction runs slower (see Section 4.3).453

We have now carefully defined each of the Schwarzschild global coordinatesSchwarzschild:
complete description

454

and displayed the resulting global metric handed to us by Einstein’s equations,455

including the range of global coordinates given in equations (5) and (6). This456

combination—plus its connectedness (topology)–provides a complete457

description of spacetime near the isolated non-spinning black hole. These tools458

alone are sufficient to determine every (classical, that is non-quantum)459

observable property of spacetime in this region.460

Objection 10. Hold it! You gave us separate Sections 3.3 and 3.4 on two461

global coordinates, Schwarzschild-r and Schwarzschild-t, respectively.462

Why no section on the third global coordinate, Schwarzschild-φ?463

Good question. In answer, compare metric (4) for flat spacetime in Box 1464

with the Schwarzschild metric (5) for curved spacetime. The last term is465

the same in both equations: −r2dφ2. Typical in relativity, the t-coordinate466

gives us the most trouble and the r-coordinate less trouble. In the467

non-spinning black hole metrics used in this book, the angle φ gives no468

trouble at all, due to the angular symmetry. For the spinning black hole469

(Chapters 17 through 21), however, even this angle becomes a470

troublemaker!471

3.5 CONSTRUCTING THE GLOBAL SCHWARZSCHILD MAP OF EVENTS472

Read a road map, but don’t drive on it!473

In this book we choose to make every measurement and observation in a local474

inertial frame. But that does not suffice to describe the relation between475

events far from one another in the vicinity of the black hole. Suppose we know“Think globally;
measure locally.”

476

the stone’s energy and momentum measured in one local inertial frame477

through which it passes. How can we predict the stone’s energy and478

momentum in a second local inertial frame far from the first?479

This prediction requires (a) knowledge of the stone’s initial location in480

global coordinates, (b) analysis of the global worldline of the stone between481

widely-separated local frames, and (c) conversion of a piece of the global482

trajectory to local inertial coordinates in the remote inertial frame. This483

section begins that process, which we summarize with the slogan “Think484

globally, measure locally.”485
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FIGURE 5 Schwarzschild map of the trajectory of a free stone that falls into a black hole.
As it falls, it emits (numbered) flashes equally separated in time on its wristwatch. However,
these flash emissions are not equally spaced along the Schwarzschild map trajectory. Each
numbered event also has its Schwarzschild-t. NO ONE observes directly the entire trajectory
shown on this map. Question: Why are numbered emission events closer together near both
ends of the trajectory than in the middle of the trajectory? The answer for events 1 through 3
should be simple. The answer for events 5 through 8 appears in Section 6.5.

Global Schwarzschild coordinates locate events around a black hole similar486

to the way in which latitude and longitude locate places on Earth’s surface487

(Section 2.3). A global map of Earth is nothing but a rule that assigns unique488

coordinates to each point on its surface.489

By analogy, we speak of a spacetime map, which is nothing but a rule490

that assigns unique coordinates to each event in the region described by thatThe spacetime map
assigns coordinates
to every event.

491

map. This section describes the construction and uses of the Schwarzschild492

spacetime map, a task that we personalize as the work of an archivist.493

Think of Schwarzschild coordinates as an accounting system, a494

bookkeeping device, a spreadsheet, a tabulating mechanism, an international495

language, a space-and-time database created by an archivist who records every496

event and all motions in the entire spacetime region exterior to the surface of497

the Earth or Moon or Sun—or anywhere around a black hole except exactly at498

its center. We personify the supervisor of this record as the SchwarzschildSchwarzschild
mapmaker

499

mapmaker. The Schwarzschild mapmaker receives reports of actual500

measurements made by local shell and other inertial observers, then converts501

and combines them into a comprehensive description of events (in502

Schwarzschild coordinates) that spans spacetime around a black hole. The503

mapmaker makes no measurements himself and does not analyze504

measurements. He is a data-handler, pure and simple.505

The Schwarzschild mapmaker (or his equivalent) is absolutely necessary506

for a complete description of the motion of stones and light signals around a507

black hole. He has the central coordinating role in describing globally all theMapmaker:
the central
coordinator.

508

events that take place outside the event horizon of the black hole. He collates509
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Box 6. The Metric as Spacetime Micrometer

FIGURE 6 The micrometer caliper measures directly a
tiny distance or thickness, bypassing x and y coordinates.
The watch measures directly the invariant wristwatch time
between two events, bypassing separate global coordinate
increments. (Photo by Per Torphammar.)

What is the metric? What is it good for? Think
of a micrometer caliper (Figure 6), a device used by
metalworkers and other practical workers to measure a
small distance. The micrometer caliper translates turns of a
calibrated screw on the cylinder into the directly-measured
distance across the gap between the flat ends of the little
cylinders in the upper right corner of the figure. The worker
owns the micrometer; the worker chooses which distance to
measure with the micrometer caliper.

The metric is our “four-dimensional micrometer” that
translates global coordinate separations between an adjacent
pair of events into the measurable wristwatch time lapse or
ruler distance between those events. You own the metric. You
choose the events whose separation you wish to measure
with the metric.

1. One possible choice: Two sequential ticks of a clock
bolted to a spherical shell. Then dr = dφ = 0 and the

wristwatch time dτ is the time lapse read directly on the
shell clock.

2. A second possible choice: Events with the same global
t-coordinate that occur at the two ends of a stick held at
rest radially between two adjacent shells, so that dt =

dφ = 0. Then the ruler distance dσ is the directly-
measured length of the stick—equation (16).

3. A third possible choice: Two sequential ticks on the
wristwatch of a stone in free fall along a radial trajectory.
Then dφ = 0 and dτ is read directly on the wristwatch.

And so on. There are an infinite number of event-pairs near
one another that you can choose for measurement using your
four-dimensional micrometer—the metric.

Assembling many micrometer caliper measurements
can in principle describe the geometry of space. Assembling
many wristwatch and ruler measurements can in principle
describe the geometry of spacetime: “The metric completely
specifies local spacetime and gravitational effects within the
global region in which it applies.” (Inside back cover.)

What advice will the “old spacetime machinist” give to
her younger colleague about the practical use of the metric?
She might share the following pointers:

1. Focus on events and the separation between each pair of
events, not fuzzy concepts like “time” or “location.”

2. Do not confuse results from one pair of events with results
from another pair of events.

3. Whenever possible, choose two adjacent events for which
the increment of one or more map coordinates is zero.

4. Whenever possible, identify the wristwatch time or ruler
distance with some observer’s direct measurement.

5. When a light flash moves directly from one event to
another event, the wristwatch time and the ruler distance
between those events are both zero: dτ = dσ = 0.

data from many local observers and combines them in various ways, for510

example drawing a global map such as the one plotted in Figure 5.511

The Schwarzschild mapmaker can be located anywhere. How does he learn512

of events in his dominion? Like a taxi dispatcher, he uses radio to keep track of513

moving stones, light flashes, and in addition locates explosions and other514

events of interest, perhaps as follows:515

Stamped on each spherical shell is its map r-coordinate; we mark different516

locations around the shell with different values of φ. At each location place a517

recording clock that reads the Schwarzschild-t (Box 6). Each clock radios to518
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Box 7. Where does the event horizon come from?
The event horizon—that one-way spacetime surface that
lets light and stones pass inward but forbids them to cross
outward—is a surprise. Who could have predicted it? Answer:
Nobody did.

Newton readily predicts the gravitational consequences of a
point mass, telling us immediately the initial acceleration of
a stone released from rest at any r-coordinate. Twice the
attracting mass, twice the stone’s acceleration at that r-value;
a million times the attracting mass, a million times the stone’s
acceleration. Newton’s theory of gravity is linear in mass.

Not so for Einstein’s general relativity, which is relentlessly
nonlinear. In general relativity not only mass but also energy
and pressure curve spacetime. A star of twice the mass
typically has increased internal pressure, resulting in more
than twice the gravitational effects at the same r-coordinate
outside its surface. For an ordinary star the added effect of

pressure is negligible; for a neutron star the added effect of
pressure is important; for a black hole the added effect of
pressure is catastrophic.

When a neutron star, for example, steals mass from a normal
companion star, the pressure near its center increases, along
with the added matter. The net result is greater than that due
to the added matter alone. At a certain point, this process
“runs away,” resulting in collapse into a black hole.

Linear effects mean proportional response in phenomena.
Nonlinear effects lead to entirely new phenomena. For the
non-spinning black hole, a major outcome of nonlinearity is
the event horizon. Near to the spinning black hole (Chapters
17 through 21), the nonlinearity of Einstein’s theory leads
to an even more complex geometry of spacetime and
consequent radical, unexpected physical effects.

the mapmaker the nature of an event that occurs next to it, along with itsMapmaker: top
level, bureaucrat

519

global coordinates (t, r, φ). After inevitable transmission delays due to the520

finite speed of light, the mapmaker at the control center assembles a global521

Schwarzschild map that gives coordinates and description of every522

measurement and observation. Our mapmaker acts as a top-level bureaucrat.523

No one lives on a road map, but we use it to describe the territory and to524

plan our trip. Similarly, coordinates r, φ, and t are simply labels on a spacetimeUsing the
Schwarzschild
map

525

map. These coordinates uniquely locate events in the entire spacetime region526

outside the surface of any spherically symmetric gravitating body or anywhere527

around a black hole except on its singularity. The Schwarzschild map guides528

our navigation near a black hole, in the same way that an arbitrary set of529

global coordinates—made into maps—guides our travels on Earth’s surface.530

But never forget: In most cases Schwarzschild map coordinate separations531

are not what any local inertial observer measures directly.Map coordinate
difference 6=
measured length
or time lapse.

532

Advice: It is best never to confuse a global map coordinate separation with533

the local inertial frame measurement of a distance or time lapse. More details534

in Chapter 5.535

Objection 11. Stop giving me second-hand ideas! I want reality. Your536

concept of a Schwarzschild map is nothing but an analogy to the inevitable537

distortions in geography when Earth’s spherical surface is squashed onto538

a flat map. Where is the true representation of curved spacetime,539

corresponding to the true spherical map of Earth’s surface?540

Early in the history of sea travel, mapmakers thought the world was flat. An541

ancient sea captain acquainted with Euclid’s plane geometry (and also the542
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much later calculus differential notation of Leibniz!) would puzzle over the543

metric for differential distance ds on Earth’s surface, equation (3) in544

Section 2.3:545

ds2 = R2 cos2 λ dφ2 +R2dλ2 (space metric: Earth’s surface) (23)

The ancient sea captain asks, “What is R?” (r-coordinate of the Earth’s546

surface). “What are λ and φ?” (angles of latitude and longitude). “Why547

does differential distance ds depend on latitude λ?” (convergence at the548

poles of lines of constant longitude). “Where is the edge?” (There is no549

edge.) Who is responsible for the captain’s perplexity about a curved550

surface? Not Nature; not Mother Earth. Neither is Nature responsible for551

our perplexity about curved spacetime. Everything will be crystal clear as552

soon as we can visualize four-dimensional curved spacetime. But we do553

not know anyone who can do this; we certainly cannot! So we554

compromise, we do our best to live with our limitations and to develop555

intuition from the analogy to curved surfaces in space, such as the partial556

visualization of Schwarzschild geometry in the following sections.557

Black holes just didn’t “smell right”558

During the 1920s and into the 1930s, the world’s most renowned experts559

on general relativity were Albert Einstein and the British astrophysicist560

Arthur Eddington. Others understood relativity, but Einstein and561

Eddington set the intellectual tone of the subject. And, while a few others562

were willing to take black holes seriously, Einstein and Eddington were563

not. Black holes just didn’t “smell right”; they were outrageously bizarre;564

they violated Einstein’s and Eddington’s intuitions about how our565

Universe ought to behave . . . We are so accustomed to the idea of black566

holes today that it is hard not to ask, “How could Einstein be so dumb?567

How could he leave out the very thing, implosion, that makes black568

holes?” Such a reaction displays our ignorance of the mindset of nearly569

everybody in the 1920s and 1930s . . . Nobody realized that a sufficiently570

compact object must implode, and that the implosion will produce a black571

hole.572

—Kip Thorne573

3.6 THE SPACETIME SLICE574

Do the best we can to visualize curved spacetime575

This section introduces a method of visualizing curved spacetime—called the576

spacetime slice—that we use repeatedly throughout the book. Every such577

visualization of curved spacetime is partial and incomplete—it does not tell578

all!—but can carry us some of the way toward intuitive understanding of579

spacetime curvature.580

DEFINITION 2. Spacetime slice581

A spacetime slice—which we usually just call a slice—is a582

two-dimensional spacetime surface on which we plot two global583

coordinates of all events that lie on that surface and that have equal584
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                     SLICE
Two-dimensional spacetime surface 
specified by its topology and the ranges of 
its coordinates and covered with events.

  APPLY 
 METRIC

On every region of the slice 
we can either draw a
LIGHT CONE DIAGRAM

or construct an
EMBEDDING DIAGRAM

FIGURE 7 Preview: When we apply the global metric to a slice, then on every region of
the slice we can either draw a light cone diagram or construct an embedding diagram.

values for all other global coordinates. We indicate a slice with squareDefinition:
spacetime slice

585

brackets; the three alternative slices for our Schwarzschild global586

coordinates are [r, φ], [r, t], and [φ, t]. Our definition of slice includes its587

range of coordinates and its connectedness (topology). The slice—even588

when populated with events—does not use the metric, so a spacetime589

slice carries no information whatsoever about spacetime curvature.590

This feature makes the slice useful in both special and general relativity.591

The following remarkable property of the spacetime slice will illuminateOn every region
of every slice:
light cone diagram or
embedding diagram

592

the remainder of this book: When we apply the global metric to a spacetime593

slice, then on every region of every slice we can either draw worldlines or set594

up an embedding diagram. Figure 7 previews the content of the following595

sections.596

What does “every region” of the slice mean in the caption to Figure 7?597

For the non-spinning black hole the regions are outside and inside the event598

horizon. Section 3.7 shows that light cones can be drawn on both regions for599

the [r, t] slice. Section 3.9 shows that outside the event horizon the [r, φ] slice is600

an embedding diagram.601
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FIGURE 8 Schwarzschild light cone diagram on an [r, t] slice, constructed from segments
of light worldlines from equation (26), showing future (F) and past (P) of each event (filled dots).
At each r-coordinate the light cone can be moved up or down vertically without change of
shape, as shown.

3.7 LIGHT CONE DIAGRAM ON AN [r,t ] SLICE602

The global t-coordinate can run backward along a worldline!603

We can learn a lot about predictions of the Schwarzschild metric by plottingOn an [r, t] slice. . . 604

light cones. To derive the worldline of a light flash in r, t coordinates, set605

dτ = 0 and dφ = 0 in (5). The result is:606

0 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 (light, and dφ = 0) (24)

Which leads to the equation:607

dt

dr
= ± r

r − 2M
(light, radial motion) (25)

Integrate this to find the equation for the worldline of a light flash:Light cones 608
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Box 8. A White Hole?

AC

D
E

Bt/M

r/M
r = 2M0

FIGURE 9 Schematic of a light cone inside the event
horizon in Schwarzschild global coordinates.

Inside the event horizon, do a stone and light flash really move
only toward smaller r? And does Figure 8 correctly represent
this? Why do the light cones not open upward in this figure, as
they do in flat spacetime and also outside the event horizon?

To answer these questions, assume that the worldline of the
stone passes through event E, the intersection of the light
cone worldlines in Figure 9. Then determine what worldlines
through E are possible between A and C (solid line) or
between D and B (dashed line). The metric tells us how the
stone’s wristwatch advances along its constant-φ worldline,
From (24), it reads

dτ2 =

(
1 −

2M

r

)
dt2 −

(
1 −

2M

r

)−1

dr2 (27)

Wristwatch time in (27) is real, therefore physical, only if the
right side is positive. You can show that along a worldline
connecting events D and B (dashed line), the wristwatch time
is imaginary. In contrast, you can show that along a worldline
that connects events A and C (solid line), wristwatch time is
real. First conclusion: Worldlines of stones that pass through

event E can pass only from either the A region to the C region
or from the C region to the A region. No stone worldline
through event E can connect events B and D.

Next question: In which direction does the stone move
between events A and C inside the event horizon? Arrows on
the light cone imply that the motion is from A to C, namely to
smaller r. But all differentials in (27) are squared: The metric
allows motion in either direction.

We now show that motion to larger r cannot occur inside
the event horizon. This means that the solution of the metric
that allows motion to larger r inside the event horizon is an
extraneous solution and does not correspond to the workings
of Nature.

Suppose that the stone moves to larger r, from event C to
event A, in which case the light cone arrows in Figure 9 would
point to the right. That means that at an earlier wristwatch
time the stone was at C. Now draw a light cone that crosses
at event C. Then there is a still earlier event to the left of C
through which the stone passed. Repeat this process until we
reach r = 0, from which this stone must have emerged. The
result is what we call a white hole. A white hole spews stones
and light outward from its singularity, the opposite of a black
hole.

Do white holes exist in Nature? We have not detected any.
And if they should temporarily form, how could they possibly
survive, since their central feature is to empty themselves into
surrounding spacetime? The method we use here is called
reductio ad absurdum, reduction to an absurd result.

Final conclusion: Arrows on the light cones inside the event
horizon in Figure 9 point in the physically correct direction,
which funnels stones and light toward the singularity. The
corresponding light cones in Figure 8 do the same.

t− t1 = ±
(
r − r1 + 2M ln

∣∣∣∣ r/M − 2

r1/M − 2

∣∣∣∣) (light, radial motion) (26)

where (r1, t1) are initial coordinates of the light flash. Figure 8 plots the609

resulting light cone diagram for many different values of (r1, t1).610

Figure 8 tells us a lot about physical predictions of the Schwarzschild611

metric. The light cone of an event tells us the past (P) and future (F) of thatTrouble at the
event horizon

612

event. Note, first, that at the event horizon light does not change r-coordinate613

on this slice. Second, inside the event horizon everything moves to smaller r.614

The light cone corrals possible worldlines of a stone that passes through that615
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event—such as worldlines for Stone A and Stone B in the plot. Note, third,616

that the t-coordinate runs backward along worldlines B and D.617

Objection 12. How can light be stuck at the event horizon, moving neither618

inward or outward?619

Figure 8 tells us that near the event horizon the t-coordinate changes very620

rapidly along a light ray, while the r coordinate changes very little. This is a621

problem with the Schwarzschild t coordinate that obscures observed622

results. We can say that the Schwarzschild t-coordinate is diseased, does623

not correctly predict observations. Chapters 6 and 7 analyze and624

overcome this global coordinate difficulty and show that light can fall to625

smaller r, but not move to larger r inside the event horizon.626

Objection 13. Oops! How can time run backward along a worldline, such627

as that of Stone B in Figure 8? Its arrow tends downward with respect to628

the t/M axis.629

Careful! Never use the word “time” by itself (Section 2.7). Only the global630

t-coordinate runs backward along worldlines B and D in Figure 9. Global631

coordinates are (almost) totally arbitrary; we choose them freely, so we632

cannot trust them to tell us what we will observe. Only the left side of the633

metric does that, for example giving us wristwatch time between two634

events. The wristwatch time is positive as the stone progresses along635

worldline B in Figure 8; and along the worldline of every light flash the636

wristwatch time is zero. Box 8 shows that the motion of both light and637

stones must be to smaller r inside the event horizon.638

Objection 14. Aha! I’ve caught you in a serious contradiction. Inside the639

horizon the worldline of the stone in Figure 8 is flatter than that of light.640

That is, the stone traverses a greater span of r coordinate per unit time641

than light does. The stone moves faster than light! Let’s see you wiggle out642

of that one!643

Again you use the word “time” incorrectly and compound the error by644

changing r rather than moving a distance. Global coordinates are645

arbitrary—our choice!—and global coordinate separations are not646

measured quantities. This arbitrariness combines with spacetime647

curvature to create the distortions plotted in Figure 8. Different global648

coordinates give different distortions—see the same plot with different649

global coordinates in Figure 5, Section 7.6. For every global coordinate650

system dr/dt inside the event horizon does not measure the velocity of651

anything. We favor measurement and observation on a local flat patch,652

where special relativity rules. Chapter 5 has a lot more on this subject.653
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3.8 INSIDE THE EVENT HORIZON: A LIGHT CONE DIAGRAM ON AN [r,φ] SLICE654

Inside the event horizon, Schwarzschild-r is timelike!655

To continue our attempt to visualize curved spacetime around a black hole, weOn an [r, φ] slice. . . 656

plot light cones on an [r, φ] slice. Light plots on this slice require that dτ = 0657

and dt = 0. With these conditions, (5) becomes658

0 = −
(

1− 2M

r

)−1

dr2 − r2dφ2 (light, and dt = 0) (28)

So the trajectory of light on the [r, φ] slice satisfies the equation:659

dφ

dr
= ± 1

r1/2(2M − r)1/2
(light, dt = 0) (29)

The left side of (29) is real only if r ≤ 2M , namely at or inside the event660

horizon. Whoops: The only region on the [r, φ] slice on which we can drawLight cones
inside the
event horizon

661

worldlines is inside the event horizon. So what is going on outside the event662

horizon? Section 3.9 answers this question; here we plot light cones on the663

[r, φ] slice inside the event horizon. To integrate (29), use the substitution:664

r = 2Mz2 so dr = 4Mzdz (30)

With this substitution, (29) becomes:665

dφ

dz
= ± 4z

(2z2)
1/2

(2− 2z2)
1/2

= ± 2

(1− z2)
1/2

(light, dt = 0) (31)

Integrate this to obtain:666

φ− φ1 = ±2

∫ z

z1

dz

(1− z2)1/2
= ±2 [arcsin z − arcsin z1] (32)

Substitute back from (30) to yield the integral of (29):667

φ− φ1 = ±2

[
arcsin

( r

2M

)1/2
− arcsin

( r1
2M

)1/2]
(33)

(light, 0 < r ≤ 2M, 0 ≤ φ < 2π)

Light cones sprout from events at the filled dots (r1, φ1) in Figure 10.668

Equation (33) does not give real results for r > 2M . However, as r approaches669

r1 = 2M from below, the magnitude of the slopes of dφ/dr in (29) increases670

without limit, leading to the vertical lines at r = 2M in the figure.671

Objection 15. Wait a minute! I thought we could draw light cones only on a672

diagram with one space axis and one time axis. Figure 10 plots light cones673

using two space coordinates, r and φ!674
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FIGURE 10 Light cones for different events (filled dots) on an [r, φ] slice inside and at the
event horizon, showing the past (P) and future (F) of each event. Each light cone can be moved
vertically, as shown. At r = 2M the light moves neither inward nor outward, hence the vertical
line. Because of the cyclic nature of φ, namely φ+ 2π = φ, this diagram can be rolled up as a
cylinder, on which the φ = 0 axis and the φ = 2π line coincide.

Never assume that global coordinate separations in t, r, or φ tell us675

anything about space and time measurements. We favor measurement in676

a local inertial frame, using local coordinates—not global coordinates.677

Later we show that inside the event horizon the Schwarzschild r678

coordinate behaves like a time (and the Schwarzschild t coordinate679

behaves like a distance). So Figure 10 does describe the motion of light.680

The light cones in the figure fulfill one of their basic functions: For each681

event they divide spacetime into the past (P), the future (F), and the682

absolute elsewhere.683
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3.9 OUTSIDE THE EVENT HORIZON: AN EMBEDDING DIAGRAM ON AN [r,φ] SLICE684

Freeze Schwarzschild-t; examine stretched space.685

Equation (29) tells us that we cannot draw light cones on the [r, φ] sliceOn an [r, φ] slice:
embedding diagram
outside the
event horizon

686

outside the event horizon. Figure 7 predicts an alternative way to visualize687

curved spacetime: an embedding diagram. Figure 12 shows the world’s most688

famous embedding diagram, the funnel whose form we now explain and derive.689

Think of the [r, φ] slice outside of the event horizon as an initially690

horizontal rubber sheet. Here’s how we create the embedding diagram: Anchor691

a ring at r = 2M on the original flat slice, then for r > 2M pull the rubberWe add a third
dimension.

692

sheet upward, perpendicular to that flat surface, in such a way that the curve693

with dφ = 0, called Z(r), satisfies the equation694

dσ2 =
dr2(

1− 2M

r

) (embedded surface profile) (34)

Figure 11 illustrates the resulting construction. From this figure:695

dσ2 = dZ2 + dr2 (35)

From equations (34) and (35):696

dZ2 = dσ2 − dr2 =
2M

r − 2M
dr2 (36)

Take the square root of both sides of (36) and integrate the result from697

the lower limit at r = 2M :698

Z(r) = ± (2M)
1/2

r∫
2M

dr

(r − 2M)
1/2

= 23/2M1/2(r − 2M)1/2 (37)

We choose the plus sign for the final expression on the right of (37) for699

convenience of drawing. Square both sides of (37) to obtain an equation of theParabaloid
funnel

700

form Z2 = Ar+B; this shows that the funnel profile is a parabola. Rotate this701

curve around the vertical line r = 0 to create the surfaces in Figures 12 and702

13. This funnel surface, with its parabola profile, is called a paraboloid of703

revolution. It is sometimes called a gravity well or Flamm’s paraboloid704

after Ludwig Flamm, the first to identify it in 1916.705

The vertical dimension in Figures 11, 12, and 13 is an artificial construct;706

it is not a dimension of spacetime. We ourselves added this third Euclidean707

space dimension to help visualize Schwarzschild geometry. Only the embedded708

surface represents physical spacetime where objects and people can exist. AnSpacetime only
on funnel surface

709

observer posted on this paraboloidal surface is bound to stay on that surface,710

not because he is physically limited in any way, but because locations off the711

surface in these diagrams simply do not exist in physical spacetime.712

The embedding diagram in Figure 13 illustrates some analytical results713

derived earlier in this chapter. For example:714
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Z(r)

r

dZ
dr

dσ

FIGURE 11 Constructing the radial profile of the funnel in Figures 12 and 13.

FIGURE 12 Space geometry visualized by distorting a slice through the center of a black
hole, the result “embedded” in a three-dimensional Euclidean perspective. Adjacent circles
represent adjacent shells. WE add the vertical dimension to show that the radial differential
distance dσ is greater than the differential dr (see Figure 13). Space stretching appears as a
“bending” of the plane downwards into the shape of a funnel. At the throat of the funnel, where
its slope is vertical, the r-coordinate is r = 2M .

1. Along the radial direction, dσ is greater than dr, as equation (35)715

implies and Figure 12 illustrates.716

2. The ratio dσ/dr increases without limit as the radial coordinate717

decreases toward the critical value r = 2M (vertical slope of the718

paraboloid at the throat of the funnel).719

3. The observer constrained to the paraboloid surface cannot directlyPicturing
analytical results

720

measure the r-coordinate of any shell. He derives this r-coordinate—the721

“reduced circumference”—indirectly by measuring the circumference of722

the shell and dividing this circumference by 2π (Section 3.3).723
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r = 2M

TOP VIEW

SIDE VIEW dσ > dr

FIGURE 13 Projections of the embedding diagram of Figure 12. The thick curves in the
side view are parabolas. WE choose the vertical coordinate for these curves in such a way that
the increment along a parabola corresponds to the radial increment dσ measured directly by
the shell observer. A shell observer can exist only on the paraboloidal surface (shown edge-on
as the thick curve). He can measure dσ directly but not r or dr. He derives the r coordinate
(“reduced circumference”) of a given circle by measuring its circumference and dividing by 2π.
Then dr is the computed difference between the reduced circumferences of adjacent circles;
no shell observer measures dr directly.

4. In contrast, the observer can measure the distance—call it724

σ1,2—between adjacent shells. He finds that this directly-measured725

distance is greater than the difference of their r-coordinates:726

σ1,2 > r2 − r1.727

728

QUERY 2. Spacelike relation of adjacent events on an embedded surface729

A. Explain how on an embedded surface every adjacent pair of events—separated by differential730

global coordinates—has a spacelike relation to each other.731

B. Argue that the answer to the question, “Can a worldline (Definition 9, Section 1.5) lie on an732

embedding diagram?” is a resounding “NO!”733

734
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In Query 1 you show that every pair of adjacent events on an embedded735

surface has a spacelike relation to one another (dσ2 > 0). In contrast, a stone736

must move between timelike events along its worldline (dτ2 > 0). Therefore a737

stone cannot move on an embedded surface. Even light—which moves along aAdjacent events
on an embedding
diagram have a
spacelike relation.

738

lightlike trajectory (dτ = 0)—cannot move on an embedded surface. Hence an739

embedding diagram cannot display motion at all.740

Objection 16. In a science museum I see steel balls rolling around in a741

metal funnel. Is this the same as the funnel in Figure 13?742

No. The motion of these balls approximate Newtonian orbits provided the743

depth at each funnel radius is proportional to the inverse of the radius,744

which mimics the Newtonian potential energy. This is unrelated to the745

general relativistic distortion of space near a center of gravitational746

attraction. The cross section curve in Figure 13 is a parabola.747

Comment 2. Terminology: “Except on the singularity.”748

Neither the Schwarzschild metric, nor any other global metric we use, is valid on749

the singularity of a black hole. On a singularity, by definition, spacetime curvature750

increases without limit, so general relativity is not valid there. In all the global751

coordinates we use, the non-spinning black hole has a point singularity. The752

spinning black hole has a ring singularity in our global coordinates (Chapter 18).753

We authors get tired of using—and you get tired of reading—the steady refrain754

“except at the singularity.” So from now on that idea will mostly “go without755

saying.” We will repeat the phrase occasionally, as a reminder,756

but—please!—mentally insert the phrase “except at the singularity” into every757

discussion of global coordinates around a black hole.758

Objection 17. So in summary, the space outside the event horizon of the759

non-spinning black hole has the shape of a funnel, right? I certainly see760

that funnel in textbooks and popular articles about general relativity.761

Here is the correct statement: “The global metric in Schwarzschild762

coordinates leads to a funnel embedding diagram for r > 2M .” Notice:763

This statement describes a consequence of using Schwarzschild global764

coordinates. But it is not the consequence in every global coordinate765

system. Chapter 7 introduces a global coordinate system766

—Painlevé-Gullstrand (which we call global rain coordinates)—whose767

global metric leads to an embedding diagram that is flat everywhere,768

inside as well as outside the event horizon (Box 5, Section 7.6). The key769

idea here is that curvature is a property of spacetime, not of either770

global space coordinates alone or the global t-coordinate alone. Light771

cone plots and embedding diagrams help us to visualize features of curved772

spacetime, but no single diagram fully represents curved spacetime.773

Sorry!774
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Worldtube 

Front
slice 

Observer
worldline t/M

r/M

φ

FIGURE 14 A worldtube surrounding an observer at rest in (φ, r/M) coordinates. This
worldtube is bounded with slices, one of which is shaded. How “fat” the worldtube can be and
still keep the the local frame of the observer inertial depends on the local spacetime curvature
and the sensitivity to tides of the experiment we want to conduct.

3.10 ROOM AND WORLDTUBE775

Drill a hole through spacetime.776

We are used to the idea of experimenting or carrying out an observation in a777

room. A room is a physical enclosure, such as (1) a laboratory, (2) a powered778

or unpowered spaceship, or (3) an elevator with or without its supporting779

cables.780

DEFINITION 3. Room781

A room is a physical enclosure of fixed spatial dimensions in which weDefinition:
room

782

make measurements and observations over an extended period of time.783

Thus far our room is empty; we have not yet installed the rods and clocks784

that allow us to record and analyze events (Figure 4, Section 5.7). However,785

even if the room is stationary in global r and φ coordinates, it changes its786

global t-coordinate. As it does so, the room sweeps out what we call a787

worldtube in global coordinates. Figure 14 shows the worldtube of a room at788

rest in r and φ coordinates surrounding the worldline of an observer at rest in789

the room.790

DEFINITION 4. Worldtube791

A worldtube is a bundle of worldlines of objects at rest in a room and792

worldlines of the structural components of that room. Think of aDefinition:
worldtube

793

worldtube as sheathing the worldline of an observer at work in the room.794

Sometimes, but not always, we choose to bound the worldtube with795

spacetime slices, as in Figure 14.796

The plot of the worldtube need not be straight, since it bounds theWorldtube plot
typically curves.

797

observer’s worldline, which typically curves in global coordinates. Figure 15798

shows a worldtube inside the event horizon.799



May 11, 2017 11:00 Curving170511v1 Sheet number 35 Page number 3-34 AW Physics Macros

3-34 Chapter 3 Curving

Worldtube 

Observer
worldline 

t/M

r/M

φ

FIGURE 15 A worldtube inside the event horizon. The cross section of this particular
worldtube is not rectangular; its sides are not slices in Schwarzschild coordinates. A horizontal
or near-horizontal worldline is permitted inside the event horizon; see Figure 8.

In this book we prefer to make every measurement in a local inertial800

frame. In curved spacetime inertial frames are limited in spacetime extent.801

Viewed locally, each experiment takes place inside a room of limited space802

dimension and during a limited time lapse on clocks installed and803

synchronized in that room. Viewed globally, every experiment takes place804

within a limited segment of a worldtube.805

Objection 18. You keep saying, “In this book we prefer to make every806

measurement in a local inertial frame.” Is this necessary? Could you807

describe general relativity without using local inertial frames at all?808

Yes. The timelike global metric (5) delivers, on its left side, the observed809

wristwatch time between two events differentially close to one another. You810

can integrate this differential along the worldline of a stone, for example, to811

find the wristwatch time between two events widely separated along this812

worldline. A similar distant spatial separation derives from the spacelike813

global metric (6). All of physics hangs on events, so all of (classical,814

non-quantum) physics can be analyzed without local inertial frames. Our815

preference for measurement in local inertial frames, where special relativity816

rules, is a matter of taste, clarity, and convenience for us and the reader.817
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3.11 EXERCISES818

1. Measured Distance Between Spherical Shells819

A black hole has mass M = 5 kilometers, a little more than three times that of820

our Sun. Two concentric spherical shells surround this black hole. The Lower821

shell has map r-coordinate rL; the Higher shell has map r-coordinate822

rH = rL + ∆r. Assume that ∆r = 1 meter and consider the following four823

cases:824

(a) rL = 50 kilometers825

(b) rL = 15 kilometers826

(c) rL = 10.1 kilometers827

(d) rL = 10.01 kilometers828

(e) rL = 10.001 kilometers829

A. For each case (a) through (e), use (16) to make an estimate of the830

radial separation σ measured directly by a shell observer. Keep three831

significant digits for your estimate.832

B. Next, in each case (a) through (e) use the result of Sample Problem 1833

in Section 3.3 to find the exact distance between shells measured834

directly by a shell observer. Keep three significant digits for your result.835

C. How do your estimates and exact results compare, to three significant836

digits, for each of the five cases? Give a criterion for the condition837

under which the estimate of part A will be a good approximation of838

the exact result of part B.839

2. Grazing our Sun840

Verify the statement in Section 3.4 concerning two spherical shells around our841

Sun. The lower shell, of reduced circumference rL = 695 980 kilometers, just842

grazes the surface of our Sun. The higher shell is of reduced circumference one843

kilometer greater, namely rH = 695 981 kilometers. Verify the prediction that844

the directly-measured distance between these shells will be 2 millimeters more845

than 1 kilometer. Hint: Use the approximation inside the front cover.846

(Outbursts and flares leap thousands of kilometers up from Sun’s roiling847

surface, so this exercise is unrealistic—even if we could build these shells!)848

3. Many Shells?849

The President of the Black Hole Construction Company is waiting in your850

office when you arrive. He is waxing wroth. (“Tell Roth to wax [him] for851

awhile.”— Groucho Marx)852

“You are bankrupting me!” he shouts. “We signed a contract that I would853

build spherical shells centered on Black Hole Alpha, the shells to be 1 meter854
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apart extending down to the event horizon. But we have already constructed855

the total number we thought would be required and are nowhere near finished.856

We are running out of materials and money!”857

“Calm down a minute.” you reply. “Black Hole Alpha has an event858

horizon r-coordinate r = 2M = 10 kilometers = 10 000 meters. You agreed to859

build 1000 spherical shells starting at reduced circumference r = 10 001860

meters, then r = 10 002 meters, then r = 10 003 meters, and so forth, ending861

at r = 11 000 meters. So what is the problem?”862

“I don’t know. Here is our construction method: My worker robot mounts863

a 1-meter rod vertically (radially) from each completed shell, measures this864

rod in place to be sure it is exactly 1 meter long, then welds to the top end of865

this rod the horizontal (tangential) beam of the next spherical shell of larger866

r-coordinate.”867

“Ah, then your company is indeed facing a large unnecessary expense,”868

you conclude. “But I think I can tell you how you should construct the shells.”869

A. Explain to the President of the Black Hole Construction Company870

what his construction method should have been in order to fulfill his871

obligation to build 1000 correctly spaced spherical shells. Be specific,872

but do not be fussy.873

B. Substitute the r-coordinate of the innermost shell into equation (16) to874

make a first estimate of the directly-measured separation between the875

innermost shell and the second shell, the one with the next-larger876

r-coordinate.877

C. Using the r-coordinate of the second shell, the one just outside the878

innermost shell, make a second estimate of the directly-measured879

separation between the innermost shell and the second shell.880

D. Optional. Use equation (18) to make an exact calculation of the881

directly-measured separation between the innermost shell and the one882

just outside it. How does the result of your exact calculation compare883

with the estimates of Parts B and C?884

E. Determine the number of shells that the Black Hole Construction885

Company would have built if the President had completed the task886

according to his misunderstood plan.887

4. A Dilute Black Hole888

Most descriptions of black holes are apocalyptic; you get the impression that889

black holes are extremely dense objects. Of course a black hole is not dense890

throughout, because all matter quickly dives to the central crunch point. Still,891

one can speak of an artificial “average density,” defined, say, by the total mass892

M divided by a spherical Euclidean volume of radius r = 2M. In terms of this893

definition, general relativity does not require that a black hole have a large894

average density. In this exercise you design a black hole with average density895

equal to that of the atmosphere you breathe on Earth, roughly 1 kilogram per896
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cubic meter. Carry out all calculations to one-digit accuracy—we want an897

estimate! Hint: Be careful with units, especially when dealing with both898

conventional and geometric units.899

A. From the Euclidean equation for the volume of a sphere900

V =
4

3
πr3 (Euclid)

find an equation for the mass M of air contained in a sphere of radius901

r, in terms of the density ρ in kilograms/meter3. Use the conversion902

factor G/c2 (Section 3.2) to express this mass in meters. (The volume903

formula used here is for Euclidean geometry, and we apply it to curved904

space geometry—so this exercise is only the first step in a more905

sophisticated analysis.)906

B. Let the radius of the Euclidean spherical volume of air be equal to the907

map r-coordinate of the event horizon of the black hole. Assuming that908

our designer black hole has the density of air, what is the map r of the909

event horizon in terms of physical constants and air density?910

C. Compare your answer to the radius of our solar system. The mean911

radius of the orbit of the (former!) planet Pluto is approximately912

6× 1012 meters.913

D. How many times the mass of our Sun is the mass of your designer914

black hole?915

5. Astronaut Stretching According to Newton916

As you dive feet first radially toward the center of a black hole, you are not917

physically stress-free and comfortable. True, you detect no overall accelerating918

“force of gravity.” But you do feel a tidal force pulling your feet and head919

apart and additional forces squeezing your middle from the sides like a920

high-quality corset. When do these tidal forces become uncomfortable? We921

have not yet answered this question using general relativity, but Newton is922

available for consultation, so let’s ask him. One-digit accuracy is plenty for923

numerical estimates in this exercise.924

A. Take the derivative with respect to r of the local acceleration g in925

equation (13) to obtain an expression dg/dr in terms of M and r.926

We want to find the radius rouch at which you begin to feel927

uncomfortable. What does “uncomfortable” mean? So that we all agree,928

let us say that you are uncomfortable when your head is pulled upward929

(relative to your middle) with a force equal to the force of gravity on930

Earth, ∆g = |gEarth|, your middle is in a local inertial frame so feels no931

force, and your feet are pulled downward (again, relative to your middle)932

with a force equal to the force of gravity on Earth ∆g = |gEarth|.933
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B. How massive a black hole do you want to fall into? Suppose M = 10934

kilometers = 10 000 meters, or about seven times the mass of our Sun.935

Assume your head and feet are 2 meters apart. Find rouch, in meters, at936

which you become uncomfortable according to our criterion. Compare937

this radius with that of Earth’s radius, namely 6.4× 106meters.938

C. Will your discomfort increase or decrease or stay the same as you939

continue to fall toward the center from this radius?940

D. Suppose you fall from rest at infinity. How fast are you going when you941

reach rouch according to Newton? Express this speed as a fraction of942

the speed of light.943

E. Take the speed in part D to be constant from that radius to the center944

and find the corresponding (maximum) time in meters to travel from945

rouch to the center, according to Newton. This will be the maximum946

Newtonian time lapse during which you will be—er—uncomfortable.947

F. What is the maximum time of discomfort, according to Newton,948

expressed in seconds?949

Note 1: If you carried the symbol M for the black hole mass through these950

equations, you found that it canceled out in expressions for the maximum time951

lapse of discomfort in parts E and F. In other words, your discomfort time is952

the same for a black hole of any mass when you fall from rest at953

infinity—according to Newton. This equality of discomfort time for all M is954

also true for the general relativistic analysis.955

Note 2: Suppose you drop from rest starting at a great distance from the956

black hole. Section 7.2 analyzes the wristwatch time lapse from any radius to957

the center according to general relativity. Section 7.9 examines the general958

relativistic “ouch time.”959

6. Black Hole Area Never Decreases960

Stephen Hawking discovered that the area of the event horizon of a black hole961

never decreases, when you calculate this area with the Euclidean formula962

A = 4πr2. Investigate the consequences of this discovery under alternative963

assumptions described in parts A and B that follow.964

Comment 3. Increase disorder965

The rule that the area of a black hole’s event horizon does not decrease is966

related in a fundamental way to the statistical law stating that the disorder (the967

so-called entropy) of an isolated physical system does not decrease. See968

Thorne, Black Holes and Time Warps, pages 422–426 and 445-446, and969

Wheeler, A Journey into Gravity and Spacetime, pages 218-222.970

Assume that two black holes coalesce. One of the initial black holes has mass971

M1 and the other has mass M2.972

A. Assume, first, that the masses of the initial black holes simply add to973

give the mass of the resulting larger black hole. How does the974
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r-coordinate of the event horizon of the final black hole relate to the975

r-coordinates of the event horizons of the initial black holes? How does976

the area of the event horizon of the final black hole relate to the areas977

of the event horizons of the initial black holes? Calculate the map r978

and area of the event horizon of the final black hole for the case where979

one of the initial black holes has twice the mass of the other one, that980

is, M2 = 2M1 = 2M ; express your answers as functions of M .981

B. Now make a different assumption about the final mass of the combined982

black hole. Listen to John Wheeler and Ken Ford (Geons, Black Holes,983

and Quantum Foam, pages 300-301) describe the coalescence of two984

black holes.985

If two balls of putty collide and stick together, the mass of986

the new, larger ball is the sum of the masses of the balls that987

collide. Not so for black holes. If two spinless, uncharged988

black holes collide and coalesce—and if they get rid of as989

much energy as they possibly can in the form of gravitational990

waves as they combine—the square of the mass of the new,991

heavier black hole is the sum of the squares of the combining992

masses. That means that a right triangle with sides scaled to993

measure the [squares of the] masses of two black holes has a994

hypotenuse that measures the [square of the] mass of the995

single black hole they form when they join. Try to picture the996

incredible tumult of two black holes locked in each other’s997

embrace, each swallowing the other, both churning space and998

time with gravitational radiation. Then marvel that the999

simple rule of Pythagoras imposes its order on this ultimate1000

cosmic maelstrom.1001

Following this more realistic scenario, find the r-value of the resulting1002

event horizon when black holes of masses M1 and M2 coalesce. How1003

does the area of the event horizon of the final black hole relate to the1004

areas of the event horizons of the initial black holes?1005

C. Do the results of both part A and part B follow Hawking’s rule that1006

the event horizon’s area of a black hole does not decrease?1007

D. Assume that the mass lost in the analysis of Part B escapes as1008

gravitational radiation. What is the mass-equivalent of the energy of1009

that gravitational radiation?1010

7. Zeno’s Paradox1011

Zeno of Elea, Greece, (born about 495 BCE, died about 430 BCE) developed1012

several paradoxes of motion. One of these states that a body in motion1013

starting from Point A can reach a given final Point B only after having1014

traversed half the distance between Point A and Point B. But before1015
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traversing this half it must cover half of that half, and so on ad infinitum.1016

Consequently the goal can never be reached.1017

A modern reader, also named Zeno, raises a similar paradox about1018

crossing the event horizon. Zeno refers us to the relation between dσ and dr1019

for radial separation:1020

dσ =
dr(

1− 2M

r

)1/2
(dt = 0, dφ = 0) (38)

Zeno then asserts, “As r approaches 2M, the denominator on the right1021

hand side of (38) goes to zero, so the distance between adjacent shells becomes1022

infinite. Even at the speed of light, an object cannot travel an infinite distance1023

in a finite time. Therefore nothing can arrive at the event horizon and enter1024

the black hole.” Analyze and resolve this modern Zeno’s paradox using the1025

following argument or some other method.1026

As often happens in relativity, the question is: Who measures what? In1027

order to cross the event horizon, the diving object must pass through1028

every shell outside the event horizon. Each shell observer measures the1029

incremental ruler length dσ between his shell and the one below it. Then1030

the observer on that next-lower shell measures the incremental ruler1031

distance between that shell and the one below it. By adding up these1032

increments, we can establish a measure of the “summed ruler lengths1033

measured by shell observers from the shell at higher map rH to the shell1034

at lower map rL” through which the object must move to reach the1035

event horizon.1036

We integrated (38) from one shell to another in Sample Problem 1 in1037

Section 3.3. Let rL → 2M in that solution, and show that the resulting1038

distance from rH to rL, the “summed ruler lengths,” is finite as1039

measured by the collection of collaborating shell observers. This is true1040

even though the right side of (38) becomes infinite exactly at r = 2M.1041

Will collaborating shell observers conclude among themselves that the1042

in-falling stone reaches the event horizon? The present exercise shows1043

that the “summed ruler lengths” is finite from any shell to the event1044

horizon. However, motion involves not only distance but also time—and1045

in relativity time does not follow common expectations! What can we1046

say about the “summed shell time” for the passage of a diver through1047

the “summed shell distance” calculated above? Chapter 6, Diving, shows1048

that the observer on every shell measures an inertial diver to pass him1049

with non-zero speed, a local shell speed that continues to increase as the1050

diver gets closer and closer to the event horizon. Each shell observer1051

therefore clocks a finite (non-infinite) time for the diver to pass from his1052

shell to the shell below. Take the sum of these finite times—“sum”1053

meaning an integral similar to the integral of equation (38) carried out1054

in Sample Problem 1. When computed, this integral of shell times yields1055
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a finite value for the total time measured by the collection of shell1056

observers past whom the diver passes. Hence the group of shell observers1057

agree among themselves: Someone diving radially passes them all in a1058

finite “summed shell time” and reaches the event horizon. Thank you,1059

Zeno!1060
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